Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater

生物转化 化学 污水处理 氧化还原 废水 曝气 环境化学 氮气循环 生化工程 氮气 有机化学 环境工程 环境科学 工程类
作者
Ke Shi,Bin Liang,Hao-Yi Cheng,Hongcheng Wang,Wenzong Liu,Zhiling Li,Jinglong Han,Shu-Hong Gao,Aijie Wang
出处
期刊:Water Research [Elsevier]
卷期号:258: 121778-121778
标识
DOI:10.1016/j.watres.2024.121778
摘要

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大佬发布了新的文献求助10
1秒前
lzk完成签到,获得积分10
1秒前
打打应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
急雪回风应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
mangle发布了新的文献求助10
5秒前
5秒前
Akina完成签到,获得积分10
6秒前
上官若男应助小胖采纳,获得10
6秒前
蓉城发布了新的文献求助30
7秒前
Tao完成签到,获得积分10
9秒前
9秒前
科目三应助听话的晓夏采纳,获得10
11秒前
司空踏歌发布了新的文献求助10
13秒前
Mya发布了新的文献求助10
14秒前
sutharsons应助阿大采纳,获得50
14秒前
Tao发布了新的文献求助10
15秒前
geo_xl完成签到 ,获得积分10
15秒前
安世倌完成签到,获得积分10
15秒前
霸气忙内完成签到,获得积分20
16秒前
17秒前
zengz完成签到,获得积分10
17秒前
小蘑菇应助LYNN采纳,获得10
19秒前
20秒前
林森发布了新的文献求助200
22秒前
钟钟钟完成签到,获得积分10
23秒前
ccx发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551993
求助须知:如何正确求助?哪些是违规求助? 3128458
关于积分的说明 9377942
捐赠科研通 2827506
什么是DOI,文献DOI怎么找? 1554423
邀请新用户注册赠送积分活动 725468
科研通“疑难数据库(出版商)”最低求助积分说明 714899