Machine-learning approaches for risk prediction in transcatheter aortic valve implantation: Systematic review and meta-analysis

荟萃分析 心脏病学 医学 内科学 计算机科学 人工智能
作者
Xander Jacquemyn,Emanuel Van Onsem,Keith Dufendach,James A. Brown,Dustin Kliner,Catalin Toma,Derek Serna‐Gallegos,Michel Pompeu Sá,Ibrahim Sultan
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
被引量:4
标识
DOI:10.1016/j.jtcvs.2024.05.017
摘要

Objectives With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes following transcatheter aortic valve implantation (TAVI). We aim to identify, describe, and critically appraise ML prediction models for adverse outcomes after TAVI. Key objectives consisted in summarizing model performance, evaluating adherence to reporting guidelines, and transparency. Methods We searched PubMed, SCOPUS, and Embase through August 2023. We selected published machine learning models predicting TAVI outcomes. Two reviewers independently screened articles, extracted data, and assessed the study quality according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Outcomes included summary C-statistics and model risk of bias assessed with the Prediction Model Risk of Bias Assessment Tool (PROBAST). C-statistics were pooled using a random-effects model. Results Twenty-one studies (118,153 patients) employing various ML algorithms (76 models) were included in the systematic review. Predictive ability of models varied: 11.8% inadequate (C-statistic <0.60), 26.3% adequate (C-statistic 0.60–0.70), 31.6% acceptable (C-statistic 0.70–0.80), and 30.3% demonstrated excellent (C-statistic >0.80) performance. Meta-analyses revealed excellent predictive performance for early mortality (C-statistic: 0.81 [95% CI, 0.65-0.91]), acceptable performance for 1-year mortality (C-statistic: 0.76 [95% CI, 0.67-0.84]), and acceptable performance for predicting permanent pacemaker implantation (C-statistic: 0.75 [95% CI, 0.51-0.90]). Conclusion ML models for TAVI outcomes exhibit adequate to excellent performance, suggesting potential clinical utility. We identified concerns in methodology and transparency, emphasizing the need for improved scientific reporting standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明爱迪生完成签到,获得积分10
刚刚
木又应助能干筝采纳,获得10
刚刚
刚刚
汉堡包应助fang采纳,获得10
1秒前
Criminology34应助于庭采纳,获得10
1秒前
Tai发布了新的文献求助10
2秒前
MOOTEA发布了新的文献求助10
2秒前
科研助手完成签到,获得积分10
2秒前
island完成签到,获得积分10
2秒前
自觉寒梦完成签到,获得积分10
2秒前
林狗发布了新的文献求助30
2秒前
3秒前
浮游应助内向问寒采纳,获得10
3秒前
牙牙乐完成签到,获得积分10
5秒前
真实的小伙完成签到,获得积分10
6秒前
斯文败类应助老仙翁采纳,获得30
6秒前
6秒前
6秒前
7秒前
诸茹嫣完成签到 ,获得积分10
8秒前
aaaa完成签到,获得积分10
8秒前
yywa完成签到,获得积分10
8秒前
Owen应助明理的帆布鞋采纳,获得10
10秒前
吱吱吱发布了新的文献求助10
10秒前
852应助牙牙乐采纳,获得10
10秒前
lant0932发布了新的文献求助10
10秒前
撒旦撒完成签到,获得积分10
11秒前
SciGPT应助xh采纳,获得10
11秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
北北完成签到 ,获得积分10
14秒前
xxfsx应助白日焰火采纳,获得20
14秒前
星辰大海应助美丽的青雪采纳,获得10
14秒前
15秒前
CipherSage应助内向问寒采纳,获得10
16秒前
leo完成签到 ,获得积分10
17秒前
Tiongkok完成签到,获得积分10
17秒前
杨77完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337