Machine-learning approaches for risk prediction in transcatheter aortic valve implantation: Systematic review and meta-analysis

荟萃分析 心脏病学 医学 内科学 计算机科学 人工智能
作者
Xander Jacquemyn,Emanuel Van Onsem,Keith Dufendach,James A. Brown,Dustin Kliner,Catalin Toma,Derek Serna‐Gallegos,Michel Pompeu Sá,Ibrahim Sultan
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
被引量:4
标识
DOI:10.1016/j.jtcvs.2024.05.017
摘要

Objectives With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes following transcatheter aortic valve implantation (TAVI). We aim to identify, describe, and critically appraise ML prediction models for adverse outcomes after TAVI. Key objectives consisted in summarizing model performance, evaluating adherence to reporting guidelines, and transparency. Methods We searched PubMed, SCOPUS, and Embase through August 2023. We selected published machine learning models predicting TAVI outcomes. Two reviewers independently screened articles, extracted data, and assessed the study quality according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Outcomes included summary C-statistics and model risk of bias assessed with the Prediction Model Risk of Bias Assessment Tool (PROBAST). C-statistics were pooled using a random-effects model. Results Twenty-one studies (118,153 patients) employing various ML algorithms (76 models) were included in the systematic review. Predictive ability of models varied: 11.8% inadequate (C-statistic <0.60), 26.3% adequate (C-statistic 0.60–0.70), 31.6% acceptable (C-statistic 0.70–0.80), and 30.3% demonstrated excellent (C-statistic >0.80) performance. Meta-analyses revealed excellent predictive performance for early mortality (C-statistic: 0.81 [95% CI, 0.65-0.91]), acceptable performance for 1-year mortality (C-statistic: 0.76 [95% CI, 0.67-0.84]), and acceptable performance for predicting permanent pacemaker implantation (C-statistic: 0.75 [95% CI, 0.51-0.90]). Conclusion ML models for TAVI outcomes exhibit adequate to excellent performance, suggesting potential clinical utility. We identified concerns in methodology and transparency, emphasizing the need for improved scientific reporting standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
666发布了新的文献求助10
1秒前
ASDS完成签到,获得积分10
1秒前
赘婿应助111采纳,获得10
1秒前
1秒前
2秒前
Trace2023发布了新的文献求助10
2秒前
3秒前
斯文败类应助缓慢的饼干采纳,获得10
3秒前
3秒前
4秒前
搜集达人应助无辜丹翠采纳,获得10
4秒前
4秒前
NexusExplorer应助可可采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
archeologist完成签到,获得积分10
5秒前
香蕉觅云应助MXL采纳,获得10
5秒前
5秒前
白子双完成签到,获得积分10
5秒前
5秒前
6秒前
kk酱完成签到,获得积分10
6秒前
花砸发布了新的文献求助10
6秒前
Leo完成签到,获得积分10
6秒前
何香稳发布了新的文献求助10
6秒前
李婷发布了新的文献求助10
7秒前
浮游应助超超采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
One应助科研通管家采纳,获得10
7秒前
老四发布了新的文献求助10
7秒前
kunkun应助科研通管家采纳,获得10
7秒前
酷波er应助djx采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707