Machine-Learning Approaches for Risk Prediction in Transcatheter Aortic Valve Implantation: Systematic Review and Meta-Analysis

荟萃分析 心脏病学 医学 内科学 主动脉瓣 计算机科学 人工智能
作者
Xander Jacquemyn,Emanuel Van Onsem,Keith Dufendach,James A. Brown,Dustin Kliner,Catalin Toma,Derek Serna‐Gallegos,Michel Pompeu Sá,Ibrahim Sultan
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
标识
DOI:10.1016/j.jtcvs.2024.05.017
摘要

Objectives With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes following transcatheter aortic valve implantation (TAVI). We aim to identify, describe, and critically appraise ML prediction models for adverse outcomes after TAVI. Key objectives consisted in summarizing model performance, evaluating adherence to reporting guidelines, and transparency. Methods We searched PubMed, SCOPUS, and Embase through August 2023. We selected published machine learning models predicting TAVI outcomes. Two reviewers independently screened articles, extracted data, and assessed the study quality according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Outcomes included summary C-statistics and model risk of bias assessed with the Prediction Model Risk of Bias Assessment Tool (PROBAST). C-statistics were pooled using a random-effects model. Results Twenty-one studies (118,153 patients) employing various ML algorithms (76 models) were included in the systematic review. Predictive ability of models varied: 11.8% inadequate (C-statistic <0.60), 26.3% adequate (C-statistic 0.60–0.70), 31.6% acceptable (C-statistic 0.70–0.80), and 30.3% demonstrated excellent (C-statistic >0.80) performance. Meta-analyses revealed excellent predictive performance for early mortality (C-statistic: 0.81 [95% CI, 0.65-0.91]), acceptable performance for 1-year mortality (C-statistic: 0.76 [95% CI, 0.67-0.84]), and acceptable performance for predicting permanent pacemaker implantation (C-statistic: 0.75 [95% CI, 0.51-0.90]). Conclusion ML models for TAVI outcomes exhibit adequate to excellent performance, suggesting potential clinical utility. We identified concerns in methodology and transparency, emphasizing the need for improved scientific reporting standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孔雀翎发布了新的文献求助10
刚刚
nana完成签到,获得积分10
1秒前
1秒前
mystery发布了新的文献求助10
1秒前
2秒前
JIE完成签到 ,获得积分10
2秒前
阿媛呐完成签到,获得积分10
2秒前
2秒前
李东东发布了新的文献求助10
3秒前
李健的小迷弟应助加冰采纳,获得10
3秒前
JLU666完成签到 ,获得积分0
4秒前
酷波er应助郑旭辉采纳,获得10
4秒前
tgd完成签到,获得积分10
4秒前
wwc应助有点菜采纳,获得10
4秒前
Lucky发布了新的文献求助10
5秒前
5秒前
leopold完成签到,获得积分10
5秒前
怦然完成签到,获得积分10
6秒前
6秒前
WDD发布了新的文献求助10
6秒前
sissiarno应助史小菜采纳,获得50
8秒前
嗷呜完成签到 ,获得积分10
8秒前
零一发布了新的文献求助10
9秒前
10秒前
11秒前
孔雀翎完成签到,获得积分10
13秒前
研友_xnEOX8发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
聪仔应助Alger采纳,获得10
15秒前
科研通AI2S应助是我呀小夏采纳,获得10
15秒前
16秒前
零一完成签到,获得积分10
16秒前
18秒前
聪仔应助喔哦采纳,获得10
19秒前
Zeling发布了新的文献求助10
20秒前
mimimi发布了新的文献求助10
20秒前
支妙发布了新的文献求助10
22秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212093
求助须知:如何正确求助?哪些是违规求助? 2860891
关于积分的说明 8126608
捐赠科研通 2526818
什么是DOI,文献DOI怎么找? 1360630
科研通“疑难数据库(出版商)”最低求助积分说明 643249
邀请新用户注册赠送积分活动 615504