Machine-learning approaches for risk prediction in transcatheter aortic valve implantation: Systematic review and meta-analysis

荟萃分析 心脏病学 医学 内科学 计算机科学 人工智能
作者
Xander Jacquemyn,Emanuel Van Onsem,Keith A. Dufendach,James A. Brown,Dustin Kliner,Catalin Toma,Derek Serna–Gallegos,Michel Pompeu Sá,Ibrahim Sultan
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
被引量:4
标识
DOI:10.1016/j.jtcvs.2024.05.017
摘要

Objectives With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes following transcatheter aortic valve implantation (TAVI). We aim to identify, describe, and critically appraise ML prediction models for adverse outcomes after TAVI. Key objectives consisted in summarizing model performance, evaluating adherence to reporting guidelines, and transparency. Methods We searched PubMed, SCOPUS, and Embase through August 2023. We selected published machine learning models predicting TAVI outcomes. Two reviewers independently screened articles, extracted data, and assessed the study quality according to the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Outcomes included summary C-statistics and model risk of bias assessed with the Prediction Model Risk of Bias Assessment Tool (PROBAST). C-statistics were pooled using a random-effects model. Results Twenty-one studies (118,153 patients) employing various ML algorithms (76 models) were included in the systematic review. Predictive ability of models varied: 11.8% inadequate (C-statistic <0.60), 26.3% adequate (C-statistic 0.60–0.70), 31.6% acceptable (C-statistic 0.70–0.80), and 30.3% demonstrated excellent (C-statistic >0.80) performance. Meta-analyses revealed excellent predictive performance for early mortality (C-statistic: 0.81 [95% CI, 0.65-0.91]), acceptable performance for 1-year mortality (C-statistic: 0.76 [95% CI, 0.67-0.84]), and acceptable performance for predicting permanent pacemaker implantation (C-statistic: 0.75 [95% CI, 0.51-0.90]). Conclusion ML models for TAVI outcomes exhibit adequate to excellent performance, suggesting potential clinical utility. We identified concerns in methodology and transparency, emphasizing the need for improved scientific reporting standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
围城完成签到,获得积分10
2秒前
sihaibo完成签到,获得积分10
2秒前
充电宝应助JamesHao采纳,获得10
4秒前
4秒前
万能图书馆应助wangerer采纳,获得30
5秒前
baiweizi应助研友_LjDyNZ采纳,获得10
5秒前
万能图书馆应助毛毛采纳,获得10
5秒前
李家人应助毛毛采纳,获得30
6秒前
华仔应助hyx9504采纳,获得10
6秒前
6秒前
6秒前
8秒前
9秒前
9秒前
Jasper应助louis136116采纳,获得10
9秒前
Shellbeaze发布了新的文献求助10
10秒前
隐形曼青应助Xana采纳,获得10
10秒前
10秒前
郭茹冰完成签到,获得积分10
11秒前
二六完成签到,获得积分10
11秒前
zcr完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
小五完成签到,获得积分20
13秒前
13秒前
ZZ发布了新的文献求助10
14秒前
小二郎应助白日梦采纳,获得10
14秒前
潘嫄完成签到,获得积分10
14秒前
wanci应助欣喜南莲采纳,获得10
14秒前
ping完成签到,获得积分10
16秒前
17秒前
打打应助隐形的凝梦采纳,获得10
17秒前
费凝海发布了新的文献求助10
17秒前
18秒前
光亮晓蓝完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298