Facial micro-expression recognition using stochastic graph convolutional network and dual transferred learning

计算机科学 模式识别(心理学) 人工智能 卷积神经网络 图形 学习迁移 随机性 特征(语言学) 卷积(计算机科学) 机器学习 人工神经网络 理论计算机科学 数学 语言学 统计 哲学
作者
Hui Tang,Li Chai
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106421-106421 被引量:10
标识
DOI:10.1016/j.neunet.2024.106421
摘要

Micro-expression recognition (MER) has drawn increasing attention due to its wide application in lie detection, criminal detection and psychological consultation. However, the best recognition accuracy on recent public dataset is still low compared to the accuracy of macro-expression recognition. In this paper, we propose a novel graph convolution network (GCN) for MER achieving state-of-the-art accuracy. Different to existing GCN with fixed graph structure, we define a stochastic graph structure in which some neighbors are selected randomly. As shown by numerical examples, randomness enables better feature characterization while reducing computational complexity. The whole network consists of two branches, one is the spatial branch taking micro-expression images as input, the other is the temporal branch taking optical flow images as input. Because the micro-expression dataset does not have enough images for training the GCN, we employ the transfer learning mechanism. That is, different stochastic GCNs (SGCN) have been trained by the macro-expression dataset in the source network. Then the well-trained SGCNs are transferred to the target network. It is shown that our proposed method achieves the state-of-art performance on all four well-known datasets. This paper explores stochastic GCN and transfer learning with this random structure in the MER task, which is of great importance to improve the recognition performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助舒心盼海采纳,获得10
1秒前
1秒前
znt完成签到,获得积分20
2秒前
咖飞完成签到,获得积分10
2秒前
激昂的千秋完成签到,获得积分10
2秒前
2秒前
2秒前
小张同学完成签到,获得积分10
3秒前
刘均珺发布了新的文献求助10
3秒前
3秒前
廖丽文完成签到,获得积分20
4秒前
4秒前
无花果应助momowang采纳,获得10
4秒前
wise111发布了新的文献求助10
4秒前
5秒前
5秒前
FashionBoy应助spwan采纳,获得10
6秒前
ji发布了新的文献求助10
6秒前
大模型应助暴富采纳,获得10
6秒前
pepsisery完成签到,获得积分10
6秒前
傲娇如天发布了新的文献求助10
6秒前
涪城的涪发布了新的文献求助10
6秒前
寒来暑往发布了新的文献求助10
6秒前
Li完成签到,获得积分10
7秒前
852应助神勇的天问采纳,获得10
7秒前
7秒前
7秒前
znt发布了新的文献求助20
7秒前
柳行天完成签到 ,获得积分10
7秒前
7秒前
传奇3应助花海采纳,获得10
7秒前
芹菜发布了新的文献求助10
8秒前
ZZ完成签到,获得积分10
9秒前
球球完成签到,获得积分10
9秒前
songcy7发布了新的文献求助10
9秒前
于予鱼完成签到,获得积分10
9秒前
Akim应助心驰天外采纳,获得10
9秒前
星辰大海应助sunidea采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769