Developing a Predictive Model for Metastatic Potential in Pancreatic Neuroendocrine Tumor

神经内分泌肿瘤 医学 胰腺神经内分泌肿瘤 肿瘤科 内科学 癌症研究
作者
Jacques A. Greenberg,Yajas Shah,Nikolay A. Ivanov,Teagan E. Marshall,Scott Kulm,Jelani Williams,Catherine G. Tran,Theresa Scognamiglio,Jonas J. Heymann,Yeon J. Lee-Saxton,Caitlin E. Egan,Sonali Majumdar,Irene M. Min,Rasa Zarnegar,James R. Howe,Xavier M. Keutgen,Thomas J. Fahey,Olivier Elemento,Brendan M. Finnerty
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
卷期号:110 (1): 263-274
标识
DOI:10.1210/clinem/dgae380
摘要

Abstract Context Pancreatic neuroendocrine tumors (PNETs) exhibit a wide range of behavior from localized disease to aggressive metastasis. A comprehensive transcriptomic profile capable of differentiating between these phenotypes remains elusive. Objective Use machine learning to develop predictive models of PNET metastatic potential dependent upon transcriptomic signature. Methods RNA-sequencing data were analyzed from 95 surgically resected primary PNETs in an international cohort. Two cohorts were generated with equally balanced metastatic PNET composition. Machine learning was used to create predictive models distinguishing between localized and metastatic tumors. Models were validated on an independent cohort of 29 formalin-fixed, paraffin-embedded samples using NanoString nCounter®, a clinically available mRNA quantification platform. Results Gene expression analysis identified concordant differentially expressed genes between the 2 cohorts. Gene set enrichment analysis identified additional genes that contributed to enriched biologic pathways in metastatic PNETs. Expression values for these genes were combined with an additional 7 genes known to contribute to PNET oncogenesis and prognosis, including ARX and PDX1. Eight specific genes (AURKA, CDCA8, CPB2, MYT1L, NDC80, PAPPA2, SFMBT1, ZPLD1) were identified as sufficient to classify the metastatic status with high sensitivity (87.5-93.8%) and specificity (78.1-96.9%). These models remained predictive of the metastatic phenotype using NanoString nCounter® on the independent validation cohort, achieving a median area under the receiving operating characteristic curve of 0.886. Conclusion We identified and validated an 8-gene panel predictive of the metastatic phenotype in PNETs, which can be detected using the clinically available NanoString nCounter® system. This panel should be studied prospectively to determine its utility in guiding operative vs nonoperative management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华子的五A替身完成签到,获得积分10
1秒前
4秒前
段段完成签到,获得积分10
6秒前
11秒前
18秒前
Xxi完成签到,获得积分10
18秒前
huang完成签到,获得积分20
21秒前
21秒前
帅气的夏天完成签到,获得积分10
23秒前
赘婿应助gangstashit采纳,获得10
23秒前
懒羊羊完成签到 ,获得积分10
24秒前
张jy发布了新的文献求助10
25秒前
26秒前
学术菜鸡123完成签到,获得积分10
26秒前
gao_yiyi应助huang采纳,获得20
27秒前
洛苏发布了新的文献求助10
28秒前
28秒前
march发布了新的文献求助30
30秒前
SYLH应助科研通管家采纳,获得20
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得30
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
今后应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
充电宝应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
忐忑的蛋糕完成签到,获得积分10
31秒前
31秒前
31秒前
虎嗅蔷薇发布了新的文献求助10
34秒前
march完成签到,获得积分20
34秒前
张jy完成签到,获得积分10
35秒前
小马甲应助洛苏采纳,获得10
37秒前
40秒前
我是老大应助罗大壮采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775727
求助须知:如何正确求助?哪些是违规求助? 3321329
关于积分的说明 10204919
捐赠科研通 3036310
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783