Recognizing the Traffic State of Urban Road Networks: A Resilience-Based Data-Driven Approach

弹性(材料科学) 国家(计算机科学) 计算机科学 运输工程 道路交通 浮动车数据 地理 交通拥挤 工程类 算法 物理 热力学
作者
Jianwei Du,J. J. Cui,Gang Ren,Russell G. Thompson‬‬
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241312914
摘要

Accurate and timely traffic network state recognition is crucial in supporting intelligent transportation system (ITS) urban traffic control and guidance. Despite their significance, existing methods for traffic state recognition often fall short of practical demands owing to the dynamic nature and unpredictability of traffic flows and the high costs associated with sample processing. This paper introduces a novel resilience-based approach for classifying and identifying link-level traffic states in urban road networks by focusing on these challenges. This approach has two phases: 1) the classification phase introduces a new operational resilience index and uses a hybrid K-means++-fuzzy c-means (FCM) clustering method for traffic state labeling; and 2) the identification phase employs real-time automatic vehicle identification (AVI) data and a transformer-based model to determine current traffic conditions. A case study conducted by Shaoxing validated the effectiveness of this approach. The results show that the objective function value of the hybrid clustering method is 0.168, with a classification performance metric Xie–Beni (XB) index of 0.137 and a Davies–Bouldin index (DBI) of 12.39, indicating high-quality clustering. A comparative analysis with support vector machines, convolutional neural networks, and long short-term memory (LSTM) models revealed the superior identification performance of the transformer-based model, which achieved 93.35% accuracy (increases of 21.44%, 13.01%, and 5.89%, respectively). The proposed method offers a practical reference for real-time traffic condition monitoring from a resilience perspective in traffic management systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色夏波发布了新的文献求助10
2秒前
hhhblabla应助勤恳的含玉采纳,获得10
2秒前
YY发布了新的文献求助30
2秒前
cjw完成签到 ,获得积分10
3秒前
Owen应助粗心的chen采纳,获得10
4秒前
5秒前
5秒前
科研通AI5应助高兴123采纳,获得10
6秒前
LIUJC完成签到,获得积分10
9秒前
安笙发布了新的文献求助10
10秒前
坚强的访蕊完成签到,获得积分10
11秒前
执着烧鹅完成签到,获得积分10
13秒前
15秒前
19秒前
19秒前
扎根发布了新的文献求助10
20秒前
杨俊锋完成签到,获得积分20
20秒前
科研通AI5应助科研虫采纳,获得10
21秒前
快乐吗猪完成签到 ,获得积分10
22秒前
yjf完成签到,获得积分10
22秒前
22秒前
23秒前
深情不弱完成签到 ,获得积分10
23秒前
25秒前
香蕉觅云应助hhhhh采纳,获得10
25秒前
26秒前
小酥饼完成签到,获得积分10
26秒前
28秒前
刚刚好完成签到,获得积分10
28秒前
木子应助表演采纳,获得50
29秒前
dll完成签到 ,获得积分10
29秒前
炙热冰夏发布了新的文献求助10
30秒前
纯情的远山完成签到,获得积分10
32秒前
zhangyidian应助大气绮露采纳,获得10
34秒前
36秒前
36秒前
小马甲应助萤火采纳,获得10
39秒前
dyy发布了新的文献求助10
40秒前
研友_gnv61n完成签到,获得积分0
40秒前
xcf6653发布了新的文献求助10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174