铁电性
异质结
材料科学
光电子学
纳米技术
电介质
作者
Zhou Cui,Xunkai Duan,Jiansen Wen,Ziye Zhu,Jiayong Zhang,Jiajie Pei,Cuilian Wen,Tong Zhou,Bo Wu,Baisheng Sa
摘要
Valleytronics, utilizing the valley degree of freedom in electrons, has potential for advancing the next-generation nonvolatile storage. However, practical implementation remains challenging due to the limited control over valleytronic properties. Here, we propose ferroelectric HfCl2/Sc2CO2 van der Waals heterostructure as a platform to overcome these limitations, enabling tunable and nonvolatile valleytronic behaviors. Our findings show that the electric polarization state of the Sc2CO2 monolayer governs the electronic properties of heterostructures. Positive polarization induces a direct gap at the valleys, enabling valleytronic functionality for excitation and readout via circularly polarized light, while negative polarization results in an indirect-gap, suppressing valleytronic behavior. Moreover, our transport simulations further demonstrate a polarization-dependent ferroelectric p-i-n junction with 8 nm possesses a maximum tunnel electroresistance (TER) ratio of 1.60 × 108% at a bias of 0.5 eV. These results provide insights into ferroelectric-controlled valleytronic transitions and position the HfCl2/Sc2CO2 heterostructure as a promising candidate for energy-efficient valleytronic memory and nonvolatile storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI