Bias correction in species distribution models based on geographic and environmental characteristics

取样偏差 采样(信号处理) 计算机科学 样品(材料) 样本量测定 统计 代表(政治) 抽样分布 选择偏差 分布(数学) 计量经济学 数据挖掘 数学 滤波器(信号处理) 物理 数学分析 政治 政治学 法学 计算机视觉 热力学
作者
Quanli Xu,Xiao Wang,Junhua Yi,Yu Wang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:81: 102604-102604 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102604
摘要

Correcting sampling bias in species distribution models (SDMs) is challenging. The difficulty lies in accurately identifying and quantifying bias and the scarcity of samples, which greatly impedes the implementation of bias correction. Current methods often adjust the distribution of presence or background points within geographic or environmental spaces to correct the sampling bias in probability estimation within SDMs. However, these methods may lead to information loss, rely on subjective assumptions, and often separate geography and environment when correcting for bias. This study proposes a novel and easily implementable method termed "aggregation background." This method selects background data based on the aggregation degree of presence points in the geographic and environmental feature space, thereby approximating the representation and correction of sampling bias in the presence samples. We compared this new method with other prevalent sampling bias correction methods in the existing literature by analyzing ecological authenticity. Under varying biases and sample sizes, the aggregation background and geographic filtering methods achieved more accurate species distribution predictions compared to the target group background and other methods. Notably, when the sample size was small (≤70), the aggregation background was superior to that obtained using the geographic filtering method. These findings underscore the effectiveness of the aggregation background in improving bias correction using limited available presence sample data, without relying on assumptions about sampling bias. Our method provides a new approach for correcting complex unknown biases in SDMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝蓝的兰发布了新的文献求助10
1秒前
共享精神应助务实蜻蜓采纳,获得10
3秒前
李爱国应助一一采纳,获得10
4秒前
小蘑菇应助qz采纳,获得10
4秒前
书书子完成签到,获得积分20
5秒前
6秒前
7秒前
Jasper应助温暖的靖采纳,获得10
7秒前
锐意应助cloud采纳,获得30
10秒前
12秒前
JamesPei应助xibei采纳,获得10
12秒前
chaotianjiao完成签到 ,获得积分10
15秒前
16秒前
小马甲应助kakafan采纳,获得10
17秒前
蓝蓝的兰完成签到,获得积分10
17秒前
bjyx完成签到,获得积分10
17秒前
qz发布了新的文献求助10
18秒前
18秒前
aq22完成签到 ,获得积分10
18秒前
毛豆子完成签到,获得积分10
19秒前
21秒前
务实蜻蜓发布了新的文献求助10
21秒前
22秒前
儒雅的语梦完成签到 ,获得积分10
24秒前
25秒前
25秒前
yuki发布了新的文献求助10
26秒前
Candice应助恶恶么v采纳,获得10
27秒前
27秒前
27秒前
稳重的浩阑完成签到,获得积分20
28秒前
28秒前
Hello应助务实蜻蜓采纳,获得10
29秒前
29秒前
30秒前
30秒前
大模型应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329264
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593749
捐赠科研通 2637457
什么是DOI,文献DOI怎么找? 1443521
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656144