Bias correction in species distribution models based on geographic and environmental characteristics

取样偏差 采样(信号处理) 计算机科学 样品(材料) 样本量测定 统计 代表(政治) 抽样分布 选择偏差 分布(数学) 计量经济学 数据挖掘 数学 滤波器(信号处理) 物理 数学分析 政治 政治学 法学 计算机视觉 热力学
作者
Quanli Xu,Xiao Wang,Junhua Yi,Yu Wang
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:81: 102604-102604 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102604
摘要

Correcting sampling bias in species distribution models (SDMs) is challenging. The difficulty lies in accurately identifying and quantifying bias and the scarcity of samples, which greatly impedes the implementation of bias correction. Current methods often adjust the distribution of presence or background points within geographic or environmental spaces to correct the sampling bias in probability estimation within SDMs. However, these methods may lead to information loss, rely on subjective assumptions, and often separate geography and environment when correcting for bias. This study proposes a novel and easily implementable method termed "aggregation background." This method selects background data based on the aggregation degree of presence points in the geographic and environmental feature space, thereby approximating the representation and correction of sampling bias in the presence samples. We compared this new method with other prevalent sampling bias correction methods in the existing literature by analyzing ecological authenticity. Under varying biases and sample sizes, the aggregation background and geographic filtering methods achieved more accurate species distribution predictions compared to the target group background and other methods. Notably, when the sample size was small (≤70), the aggregation background was superior to that obtained using the geographic filtering method. These findings underscore the effectiveness of the aggregation background in improving bias correction using limited available presence sample data, without relying on assumptions about sampling bias. Our method provides a new approach for correcting complex unknown biases in SDMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梨花月应助司空元正采纳,获得10
刚刚
1秒前
学fei了吗完成签到,获得积分10
1秒前
11完成签到,获得积分10
3秒前
3秒前
浮游应助咿呀呀采纳,获得10
3秒前
孙勇发发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
天天快乐应助神秘人采纳,获得10
8秒前
9秒前
友好德天完成签到 ,获得积分10
11秒前
浮游应助风中的身影采纳,获得10
12秒前
12秒前
真水无香完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
怕孤独的忆南完成签到,获得积分10
16秒前
Melody发布了新的文献求助10
17秒前
17秒前
18秒前
浮游应助lllll采纳,获得10
18秒前
19秒前
情怀应助小冯采纳,获得10
19秒前
20秒前
20秒前
科研通AI6应助Seven采纳,获得20
20秒前
20秒前
xc完成签到,获得积分10
21秒前
21秒前
王瑶完成签到,获得积分20
22秒前
科研通AI5应助dqw采纳,获得10
22秒前
sihan625发布了新的文献求助10
22秒前
爱撒娇的岱周关注了科研通微信公众号
23秒前
神秘人发布了新的文献求助10
24秒前
不改颜色的孤星完成签到,获得积分10
24秒前
美好访蕊完成签到,获得积分10
26秒前
bi发布了新的文献求助10
27秒前
Melody完成签到,获得积分10
28秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
科研通AI5应助11采纳,获得30
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135008
求助须知:如何正确求助?哪些是违规求助? 4335582
关于积分的说明 13507290
捐赠科研通 4173211
什么是DOI,文献DOI怎么找? 2288286
邀请新用户注册赠送积分活动 1289005
关于科研通互助平台的介绍 1230049