已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bias correction in species distribution models based on geographic and environmental characteristics

取样偏差 采样(信号处理) 计算机科学 样品(材料) 样本量测定 统计 代表(政治) 抽样分布 选择偏差 分布(数学) 计量经济学 数据挖掘 数学 滤波器(信号处理) 物理 数学分析 政治 政治学 法学 计算机视觉 热力学
作者
Quanli Xu,Xiao Wang,Junhua Yi,Yu Wang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:81: 102604-102604 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102604
摘要

Correcting sampling bias in species distribution models (SDMs) is challenging. The difficulty lies in accurately identifying and quantifying bias and the scarcity of samples, which greatly impedes the implementation of bias correction. Current methods often adjust the distribution of presence or background points within geographic or environmental spaces to correct the sampling bias in probability estimation within SDMs. However, these methods may lead to information loss, rely on subjective assumptions, and often separate geography and environment when correcting for bias. This study proposes a novel and easily implementable method termed "aggregation background." This method selects background data based on the aggregation degree of presence points in the geographic and environmental feature space, thereby approximating the representation and correction of sampling bias in the presence samples. We compared this new method with other prevalent sampling bias correction methods in the existing literature by analyzing ecological authenticity. Under varying biases and sample sizes, the aggregation background and geographic filtering methods achieved more accurate species distribution predictions compared to the target group background and other methods. Notably, when the sample size was small (≤70), the aggregation background was superior to that obtained using the geographic filtering method. These findings underscore the effectiveness of the aggregation background in improving bias correction using limited available presence sample data, without relying on assumptions about sampling bias. Our method provides a new approach for correcting complex unknown biases in SDMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eric888应助科研通管家采纳,获得100
刚刚
eric888应助科研通管家采纳,获得100
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
大模型应助zhoushishan采纳,获得10
4秒前
6秒前
6秒前
李健的小迷弟应助靖哥哥采纳,获得10
8秒前
8秒前
song完成签到 ,获得积分10
9秒前
真的爱完成签到 ,获得积分10
9秒前
木木完成签到,获得积分10
13秒前
13秒前
Sylvia发布了新的文献求助10
13秒前
碧蓝的之云完成签到,获得积分10
16秒前
16秒前
16秒前
香蕉觅云应助dlfg采纳,获得10
17秒前
17秒前
17秒前
Levin发布了新的文献求助10
18秒前
18秒前
在水一方应助椰子卷采纳,获得10
18秒前
清爽白开水完成签到 ,获得积分10
19秒前
Criminology34举报611牛马求助涉嫌违规
19秒前
19秒前
酷炫的__完成签到 ,获得积分10
20秒前
舒服的西装完成签到 ,获得积分10
22秒前
gura完成签到 ,获得积分10
24秒前
微醺发布了新的文献求助10
25秒前
靖哥哥发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431829
求助须知:如何正确求助?哪些是违规求助? 4544692
关于积分的说明 14193609
捐赠科研通 4463892
什么是DOI,文献DOI怎么找? 2446904
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1414979