Bias correction in species distribution models based on geographic and environmental characteristics

取样偏差 采样(信号处理) 计算机科学 样品(材料) 样本量测定 统计 代表(政治) 抽样分布 选择偏差 分布(数学) 计量经济学 数据挖掘 数学 滤波器(信号处理) 物理 数学分析 政治 政治学 法学 计算机视觉 热力学
作者
Quanli Xu,Xiao Wang,Junhua Yi,Yu Wang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:81: 102604-102604 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102604
摘要

Correcting sampling bias in species distribution models (SDMs) is challenging. The difficulty lies in accurately identifying and quantifying bias and the scarcity of samples, which greatly impedes the implementation of bias correction. Current methods often adjust the distribution of presence or background points within geographic or environmental spaces to correct the sampling bias in probability estimation within SDMs. However, these methods may lead to information loss, rely on subjective assumptions, and often separate geography and environment when correcting for bias. This study proposes a novel and easily implementable method termed "aggregation background." This method selects background data based on the aggregation degree of presence points in the geographic and environmental feature space, thereby approximating the representation and correction of sampling bias in the presence samples. We compared this new method with other prevalent sampling bias correction methods in the existing literature by analyzing ecological authenticity. Under varying biases and sample sizes, the aggregation background and geographic filtering methods achieved more accurate species distribution predictions compared to the target group background and other methods. Notably, when the sample size was small (≤70), the aggregation background was superior to that obtained using the geographic filtering method. These findings underscore the effectiveness of the aggregation background in improving bias correction using limited available presence sample data, without relying on assumptions about sampling bias. Our method provides a new approach for correcting complex unknown biases in SDMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
Hungrylunch应助woshiwuziq采纳,获得20
1秒前
合适苗条发布了新的文献求助10
1秒前
安静听白发布了新的文献求助10
1秒前
krystal发布了新的文献求助10
1秒前
2秒前
15122303完成签到,获得积分10
2秒前
lht完成签到 ,获得积分10
3秒前
传奇3应助纯真电源采纳,获得10
3秒前
环走鱼尾纹完成签到 ,获得积分10
3秒前
xiuxiu_27发布了新的文献求助10
4秒前
222完成签到,获得积分10
4秒前
zyz1132完成签到,获得积分10
4秒前
何处芳歇完成签到,获得积分10
5秒前
5秒前
LXYang完成签到,获得积分10
5秒前
5秒前
LL完成签到,获得积分10
5秒前
6秒前
6秒前
十月发布了新的文献求助20
7秒前
7秒前
针地很不戳完成签到,获得积分10
7秒前
8秒前
奋斗金连完成签到,获得积分10
8秒前
科研菜鸟完成签到,获得积分10
8秒前
圈圈发布了新的文献求助10
9秒前
zhanglh完成签到 ,获得积分10
9秒前
9秒前
Liu完成签到,获得积分10
9秒前
啊大大哇完成签到,获得积分10
9秒前
一平驳回了HEIKU应助
10秒前
10秒前
草莓奶昔完成签到 ,获得积分10
10秒前
cyx发布了新的文献求助10
10秒前
11秒前
littleJ完成签到,获得积分10
11秒前
Yolo发布了新的文献求助10
11秒前
阿尔法发布了新的文献求助10
12秒前
科研菜鸟发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678