Bias correction in species distribution models based on geographic and environmental characteristics

取样偏差 采样(信号处理) 计算机科学 样品(材料) 样本量测定 统计 代表(政治) 抽样分布 选择偏差 分布(数学) 计量经济学 数据挖掘 数学 滤波器(信号处理) 物理 数学分析 政治 政治学 法学 计算机视觉 热力学
作者
Quanli Xu,Xiao Wang,Junhua Yi,Yu Wang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:81: 102604-102604 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102604
摘要

Correcting sampling bias in species distribution models (SDMs) is challenging. The difficulty lies in accurately identifying and quantifying bias and the scarcity of samples, which greatly impedes the implementation of bias correction. Current methods often adjust the distribution of presence or background points within geographic or environmental spaces to correct the sampling bias in probability estimation within SDMs. However, these methods may lead to information loss, rely on subjective assumptions, and often separate geography and environment when correcting for bias. This study proposes a novel and easily implementable method termed "aggregation background." This method selects background data based on the aggregation degree of presence points in the geographic and environmental feature space, thereby approximating the representation and correction of sampling bias in the presence samples. We compared this new method with other prevalent sampling bias correction methods in the existing literature by analyzing ecological authenticity. Under varying biases and sample sizes, the aggregation background and geographic filtering methods achieved more accurate species distribution predictions compared to the target group background and other methods. Notably, when the sample size was small (≤70), the aggregation background was superior to that obtained using the geographic filtering method. These findings underscore the effectiveness of the aggregation background in improving bias correction using limited available presence sample data, without relying on assumptions about sampling bias. Our method provides a new approach for correcting complex unknown biases in SDMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aleecia发布了新的文献求助30
1秒前
1秒前
椰子完成签到,获得积分10
2秒前
汤圆发布了新的文献求助10
3秒前
汤某某发布了新的文献求助10
3秒前
无所谓的啦完成签到,获得积分10
4秒前
糊涂的康发布了新的文献求助10
4秒前
百里一笑完成签到,获得积分10
5秒前
Dr_zsc发布了新的文献求助10
9秒前
淑婷完成签到,获得积分10
9秒前
11秒前
14秒前
Amandadym完成签到 ,获得积分10
17秒前
18秒前
儒雅的蜜粉完成签到,获得积分10
19秒前
上官若男应助LLL采纳,获得10
19秒前
20秒前
21秒前
萧萧应助Aleecia采纳,获得10
21秒前
幼汁汁鬼鬼完成签到,获得积分10
21秒前
23秒前
fu完成签到,获得积分10
24秒前
琴_Q123发布了新的文献求助10
25秒前
27秒前
研友_nPb9e8完成签到,获得积分10
28秒前
眼睛大的冷风完成签到 ,获得积分10
30秒前
fu发布了新的文献求助10
30秒前
wangwang完成签到,获得积分10
30秒前
傲娇的昊焱完成签到,获得积分10
32秒前
内向翰完成签到,获得积分10
40秒前
TING完成签到,获得积分10
40秒前
22222发布了新的文献求助10
40秒前
瑾进完成签到 ,获得积分10
41秒前
lyon发布了新的文献求助10
41秒前
完美世界应助fu采纳,获得10
41秒前
42秒前
43秒前
赵Zhao完成签到,获得积分10
44秒前
44秒前
Jasper应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263