已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bias correction in species distribution models based on geographic and environmental characteristics

取样偏差 采样(信号处理) 计算机科学 样品(材料) 样本量测定 统计 代表(政治) 抽样分布 选择偏差 分布(数学) 计量经济学 数据挖掘 数学 滤波器(信号处理) 物理 数学分析 政治 政治学 法学 计算机视觉 热力学
作者
Quanli Xu,Xiao Wang,Junhua Yi,Yu Wang
出处
期刊:Ecological Informatics [Elsevier]
卷期号:81: 102604-102604 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102604
摘要

Correcting sampling bias in species distribution models (SDMs) is challenging. The difficulty lies in accurately identifying and quantifying bias and the scarcity of samples, which greatly impedes the implementation of bias correction. Current methods often adjust the distribution of presence or background points within geographic or environmental spaces to correct the sampling bias in probability estimation within SDMs. However, these methods may lead to information loss, rely on subjective assumptions, and often separate geography and environment when correcting for bias. This study proposes a novel and easily implementable method termed "aggregation background." This method selects background data based on the aggregation degree of presence points in the geographic and environmental feature space, thereby approximating the representation and correction of sampling bias in the presence samples. We compared this new method with other prevalent sampling bias correction methods in the existing literature by analyzing ecological authenticity. Under varying biases and sample sizes, the aggregation background and geographic filtering methods achieved more accurate species distribution predictions compared to the target group background and other methods. Notably, when the sample size was small (≤70), the aggregation background was superior to that obtained using the geographic filtering method. These findings underscore the effectiveness of the aggregation background in improving bias correction using limited available presence sample data, without relying on assumptions about sampling bias. Our method provides a new approach for correcting complex unknown biases in SDMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助微光熠采纳,获得10
4秒前
康康完成签到 ,获得积分10
4秒前
科研通AI6应助悦耳夏彤采纳,获得10
6秒前
yxlyx完成签到,获得积分10
9秒前
10秒前
蛙蛙完成签到,获得积分10
12秒前
科研通AI6应助ayintree采纳,获得10
13秒前
15秒前
15秒前
16秒前
充电宝应助自由的冬易采纳,获得10
20秒前
郭焱焓发布了新的文献求助10
20秒前
小袁完成签到 ,获得积分10
20秒前
隐形路灯发布了新的文献求助10
21秒前
21秒前
华仔应助科研通管家采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得50
22秒前
浮游应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
22秒前
23秒前
艺术家完成签到 ,获得积分10
23秒前
24秒前
兰兰完成签到 ,获得积分10
25秒前
lebron发布了新的文献求助10
26秒前
寒冷芝完成签到 ,获得积分10
28秒前
teadan发布了新的文献求助10
28秒前
30秒前
31秒前
huangxin完成签到,获得积分10
33秒前
Re完成签到,获得积分10
34秒前
搜集达人应助六沉采纳,获得10
36秒前
田様应助村里的山水采纳,获得10
37秒前
Theone发布了新的文献求助30
38秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449524
求助须知:如何正确求助?哪些是违规求助? 4557576
关于积分的说明 14264395
捐赠科研通 4480697
什么是DOI,文献DOI怎么找? 2454510
邀请新用户注册赠送积分活动 1445294
关于科研通互助平台的介绍 1421031