Selective binding of cationic fibrinogen-mimicking chitosan nanoparticles to activated platelets and efficient drug release for antithrombotic therapy

抗血栓 药理学 血小板 医学 血小板活化 纤维蛋白原 体内 药物输送 化学 免疫学 内科学 生物 生物技术 有机化学
作者
Yu Huang,Jiahua Wang,Yuanyuan Guo,Seun Young Park,Hongtian Yang,Annabelle Lu,Yuehua Li,Rongjun Chen
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:: 131742-131742 被引量:2
标识
DOI:10.1016/j.ijbiomac.2024.131742
摘要

Thrombosis is the main cause of catastrophic events including ischemic stroke, myocardial infarction and pulmonary embolism. Acetylsalicylic acid (ASA) therapy offers a desirable approach to antithrombosis through a reduction of platelet reactivity. However, major bleeding complications, severe off-target side effects, and resistance or nonresponse to ASA greatly attenuate its clinical outcomes. Herein, we report a cationic fibrinogen-mimicking nanoparticle, denoted as ASA-RGD-CS@TPP, to achieve activated-platelet-targeted delivery and efficient release of ASA for safer and more effective antithrombotic therapy. This biomimetic antithrombotic system was prepared by one-pot ionic gelation between cationic arginine-glycine-aspartic acid (RGD)-grafted chitosan (RGD-CS) and anionic tripolyphosphate (TPP). This platform exhibited selective binding to activated platelets, leading to efficient release of ASA and subsequent attenuation of platelet functions, including the remarkable inhibition of platelet aggregation through a potent blockage of cyclooxygenase-1 (COX-1). After intravenous administration, ASA-RGD-CS@TPP displayed significantly prolonged circulation time and successful prevention of thrombosis in a mouse model. ASA-RGD-CS@TPP was demonstrated to significantly enhance antithrombotic therapy while showing minimal coagulation and hemorrhagic risks and excellent biocompatibility in vivo as compared to free ASA. This platform provides a simple, safe, effective and targeted strategy for the development of antithrombotic nanomedicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ooowindy发布了新的文献求助10
刚刚
1秒前
1秒前
完美世界应助mz采纳,获得10
2秒前
机灵安白完成签到,获得积分10
3秒前
3秒前
3秒前
方方发布了新的文献求助10
3秒前
背后白梦完成签到,获得积分10
3秒前
coesite完成签到,获得积分10
3秒前
寒冷的箴完成签到,获得积分10
4秒前
4秒前
4秒前
赘婿应助哈哈哈哈哈哈采纳,获得10
5秒前
苹果纹发布了新的文献求助10
5秒前
6秒前
Jasper应助木直采纳,获得30
7秒前
zhijiegao完成签到,获得积分20
7秒前
7秒前
8秒前
罗伊黄完成签到 ,获得积分10
8秒前
丘比特应助认真的金针菇采纳,获得10
8秒前
劉劉完成签到 ,获得积分10
8秒前
科研通AI5应助衡阳采纳,获得10
8秒前
bxrzj完成签到,获得积分10
8秒前
daxiooo11发布了新的文献求助10
9秒前
Cymatics发布了新的文献求助10
9秒前
sunset5min完成签到,获得积分20
9秒前
复杂真完成签到,获得积分10
9秒前
方方完成签到,获得积分10
9秒前
汪少侠发布了新的文献求助10
9秒前
糖糖关注了科研通微信公众号
10秒前
11秒前
日天的马铃薯完成签到,获得积分10
11秒前
默默的问玉完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
ooowindy完成签到,获得积分10
13秒前
聪慧的傲珊完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931