Multi-task Contrastive Learning for Anomaly Detection on Attributed Networks

计算机科学 任务(项目管理) 异常检测 异常(物理) 人工智能 物理 管理 经济 凝聚态物理
作者
Junjie Zhang,Yuxin Ding
出处
期刊:Lecture Notes in Computer Science 卷期号:: 15-26
标识
DOI:10.1007/978-981-97-2242-6_2
摘要

Anomaly detection on attributed networks is a vital task in graph data mining and has been widely applied in many real-world scenarios. Despite the promising performance, existing contrastive learning-based anomaly detection models still suffer from a limitation: the lack of fine-grained contrastive tasks tailored for different anomaly types, which hinders their capability to capture diverse anomaly patterns effectively. To address this issue, we propose a novel multi-task contrastive learning framework that jointly optimizes two well-designed contrastive tasks: context matching and link prediction. The context matching task identifies contextual anomalies by measuring the congruence of the target node with its local context. The link prediction task fully exploits self-supervised information from the network structure and identifies structural anomalies by assessing the rationality of the local structure surrounding target nodes. By integrating these two complementary tasks, our framework can more precisely identify anomalies. Extensive experiments on four benchmark datasets demonstrate that our method achieves considerable improvement compared to state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晏小敏完成签到,获得积分10
刚刚
爆米花应助风中寄云采纳,获得10
1秒前
屹舟发布了新的文献求助10
1秒前
Dou完成签到,获得积分10
1秒前
白泯完成签到,获得积分10
2秒前
1ssd发布了新的文献求助10
2秒前
667发布了新的文献求助10
2秒前
小二郎应助辰柒采纳,获得10
3秒前
4秒前
4秒前
clear完成签到,获得积分20
4秒前
4秒前
orixero应助congguitar采纳,获得10
4秒前
Evan完成签到,获得积分10
4秒前
YANG发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助10
5秒前
sunzhiyu233发布了新的文献求助10
6秒前
Raul完成签到 ,获得积分10
6秒前
6秒前
伯尔尼圆白菜完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
buuyoo完成签到,获得积分10
7秒前
科研通AI5应助魏煜佳采纳,获得10
7秒前
LLxiaolong完成签到,获得积分10
7秒前
8秒前
8秒前
巨噬细胞A完成签到,获得积分10
8秒前
8秒前
我要读博士完成签到 ,获得积分10
8秒前
xxq完成签到,获得积分20
8秒前
福气小姐完成签到 ,获得积分10
8秒前
搜集达人应助jjy采纳,获得10
9秒前
9秒前
郑总完成签到,获得积分10
9秒前
CipherSage应助马尼拉采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759