材料科学
过电位
过渡金属
密度泛函理论
金属
氧化物
离域电子
无机化学
化学工程
化学物理
催化作用
冶金
电化学
计算化学
物理化学
电极
有机化学
化学
工程类
作者
Jingxuan Zheng,Dapeng Meng,Junxin Guo,Xiaobin Liu,Ling Zhou,Zhao Wang
标识
DOI:10.1002/adma.202405129
摘要
Metal defect engineering is a highly effective strategy for addressing the prevalent high overpotential issues associated with transition metal oxides functioning as dual-function commercial oxygen reduction reaction/oxygen evolution reaction catalysts for increasing their activity and stability. However, the high formation energy of metal defects poses a challenge to the development of strategies to precisely control the selectivity during metal defect formation. Here, density functional theory calculations are used to demonstrate that altering the pathway of metal defect formation releases metal atoms as metal chlorides, which effectively reduces the formation energy of defects. The metal defects on the monometallic metal oxide surface (Mn, Fe, Co, and Ni) are selectively produced using chlorine plasma. The characterization and density functional theory calculations reveal that catalytic activity is enhanced owing to electronic delocalization induced by metal defects, which reduces the theoretical overpotential. Notably, ab initio molecular dynamics calculations, ex situ XPS, and in situ ATR-SEIRAS suggest that metal defects effectively improve the adsorption of reactive species on active sites and enhance the efficiency of product desorption, thereby boosting catalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI