Design of and research on the robot arm recovery grasping system based on machine vision

箱子 人工智能 计算机科学 机械臂 机器视觉 计算机视觉 过程(计算) 预处理器 软件可移植性 算法 程序设计语言 操作系统
作者
Yi-Jui Chiu,Yu-Yang Yuan,Sheng‐Rui Jian
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:36 (4): 102014-102014
标识
DOI:10.1016/j.jksuci.2024.102014
摘要

With the development of urban modernization, the amount of generated waste has been constantly increasing, making waste classification necessary. In the process of waste bin recycling, the main challenge is improving recycling efficiency and reducing the workload of workers. To address the problems of waste bin positioning and retrieval in the waste bin recycling process, this study proposes an automatic retrieval system based on a combination of machine vision and robotic arm motion control. The main aim is to achieve accurate and efficient detection, recognition, and retrieval of different types of waste bins. First, the YOLOv5 deep learning recognition algorithm is improved using a channel pruning technique to reduce the complexity of the model while ensuring high recognition accuracy, thus facilitating the portability and deployment of the model on various mobile devices. Then, image preprocessing is conducted using the median filtering method and the Gamma brightness correction algorithm. The HSV color model is employed, and the H component distribution is used for classifying different types of waste bins under different lighting conditions. This allows for image segmentation for different-color waste bins, facilitating the classification and recognition of waste bin images. Finally, the waste bin localization algorithm and robotic arm motion algorithm are employed to accomplish the positioning and retrieval of waste bins. The experimental results indicate that compared to the original YOLOv5 model, the improved YOLOv5 algorithm can achieve a significant reduction in parameter number, decreasing it from 7,022,326 to 2,828,675, which represents an approximately 60 % decrease. Moreover, with a marginal 0.2 % decrease in accuracy, the FLOPs value decreases from 12.9G to 7.97G, demonstrating a reduction of nearly 70 %. The model size is also reduced by almost 60 %. The results indicate that the recognition rates of different-color waste bins exhibit a trend of initially increasing and then decreasing with the intensification of light. Among the four colors of waste bins, the recognition rate of red waste bins is the highest, with an average recognition rate of 95 %. In contrast, orange waste bins have the lowest average recognition rate, with an average value of 91 %. In the grasping experiments, the detection and grasping success rates for the red waste bins are the highest, reaching 95 % and 80 %, respectively. Those of the blue waste bins are the next highest, with detection and grasping success rates of 85 % and 80 %, respectively. Finally, the detection and grasping success of orange waste bins are 80 % and 75 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dmj发布了新的文献求助10
1秒前
1秒前
天天完成签到,获得积分10
2秒前
3秒前
3秒前
大模型应助1111采纳,获得60
3秒前
称心寒松发布了新的文献求助10
4秒前
大饼卷肉完成签到,获得积分10
4秒前
ZZZZ发布了新的文献求助10
4秒前
4秒前
一朵会长树的花完成签到,获得积分10
5秒前
FashionBoy应助123采纳,获得10
5秒前
conghuang完成签到,获得积分10
5秒前
arrow13发布了新的文献求助10
5秒前
7秒前
科研通AI5应助Tian采纳,获得10
7秒前
几斗完成签到 ,获得积分10
7秒前
大个应助dmj采纳,获得10
7秒前
morning完成签到,获得积分10
8秒前
昔年完成签到 ,获得积分10
8秒前
康小郁完成签到,获得积分10
8秒前
天天发布了新的文献求助10
9秒前
9秒前
Breeze完成签到,获得积分10
9秒前
王sir发布了新的文献求助10
10秒前
10秒前
Larvenpiz完成签到,获得积分10
11秒前
mazg给mazg的求助进行了留言
12秒前
12秒前
13秒前
烟花应助Neil采纳,获得10
13秒前
14秒前
煤炭不甜发布了新的文献求助10
14秒前
呆歪歪发布了新的文献求助10
14秒前
14秒前
Wink14551发布了新的文献求助10
15秒前
程翠丝发布了新的文献求助10
15秒前
朱镕关注了科研通微信公众号
15秒前
充电宝应助张弘采纳,获得10
16秒前
Augusterny完成签到 ,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427