已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MHIF-MSEA: a novel model of miRNA set enrichment analysis based on multi-source heterogeneous information fusion

小RNA 计算生物学 基因本体论 基因 生物 计算机科学 遗传学 基因表达
作者
Jianwei Li,X. Ma,Hongxin Lin,Shi-Sheng Zhao,Bing Li,Yan Huang
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fgene.2024.1375148
摘要

Introduction: MicroRNAs (miRNAs) are a class of non-coding RNA molecules that play a crucial role in the regulation of diverse biological processes across various organisms. Despite not encoding proteins, miRNAs have been found to have significant implications in the onset and progression of complex human diseases. Methods: Conventional methods for miRNA functional enrichment analysis have certain limitations, and we proposed a novel method called MiRNA Set Enrichment Analysis based on Multi-source Heterogeneous Information Fusion (MHIF-MSEA). Three miRNA similarity networks (miRSN-DA, miRSN-GOA, and miRSN-PPI) were constructed in MHIF-MSEA. These networks were built based on miRNA-disease association, gene ontology (GO) annotation of target genes, and protein-protein interaction of target genes, respectively. These miRNA similarity networks were fused into a single similarity network with the averaging method. This fused network served as the input for the random walk with restart algorithm, which expanded the original miRNA list. Finally, MHIF-MSEA performed enrichment analysis on the expanded list. Results and Discussion: To determine the optimal network fusion approach, three case studies were introduced: colon cancer, breast cancer, and hepatocellular carcinoma. The experimental results revealed that the miRNA-miRNA association network constructed using miRSN-DA and miRSN-GOA exhibited superior performance as the input network. Furthermore, the MHIF-MSEA model performed enrichment analysis on differentially expressed miRNAs in breast cancer and hepatocellular carcinoma. The achieved p-values were 2.17e(-75) and 1.50e(-77), and the hit rates improved by 39.01% and 44.68% compared to traditional enrichment analysis methods, respectively. These results confirm that the MHIF-MSEA method enhances the identification of enriched miRNA sets by leveraging multiple sources of heterogeneous information, leading to improved insights into the functional implications of miRNAs in complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
麦兜兜完成签到 ,获得积分10
1秒前
4秒前
麦兜兜关注了科研通微信公众号
4秒前
jz发布了新的文献求助10
4秒前
6秒前
hao完成签到 ,获得积分10
7秒前
9秒前
勤奋的张完成签到,获得积分10
9秒前
10秒前
SonRisa发布了新的文献求助10
10秒前
jhb完成签到 ,获得积分10
12秒前
IBMffff发布了新的文献求助10
13秒前
李秋静发布了新的文献求助10
13秒前
冷酷向薇完成签到,获得积分10
15秒前
支翰完成签到 ,获得积分10
18秒前
19秒前
SciGPT应助dingding采纳,获得10
23秒前
24秒前
24秒前
air发布了新的文献求助10
25秒前
烟花应助悲凉的艳采纳,获得10
26秒前
28秒前
29秒前
29秒前
yuyu发布了新的文献求助20
29秒前
风趣的不弱完成签到,获得积分10
31秒前
积极慕梅应助一定要早睡采纳,获得10
33秒前
香蕉觅云应助Jenny采纳,获得10
33秒前
D-L@rabbit完成签到,获得积分10
34秒前
35秒前
tingsHHH发布了新的文献求助10
36秒前
航行天下发布了新的文献求助30
36秒前
悲凉的艳发布了新的文献求助10
38秒前
40秒前
Lei发布了新的文献求助10
47秒前
Hello应助科研通管家采纳,获得10
53秒前
田様应助科研通管家采纳,获得10
53秒前
54秒前
彭于晏应助科研通管家采纳,获得10
54秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825895
捐赠科研通 2454175
什么是DOI,文献DOI怎么找? 1306214
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503