MHIF-MSEA: a novel model of miRNA set enrichment analysis based on multi-source heterogeneous information fusion

小RNA 计算生物学 基因本体论 基因 生物 计算机科学 遗传学 基因表达
作者
Jianwei Li,X. Ma,Hongxin Lin,Shi-Sheng Zhao,Bing Li,Yan Huang
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fgene.2024.1375148
摘要

Introduction: MicroRNAs (miRNAs) are a class of non-coding RNA molecules that play a crucial role in the regulation of diverse biological processes across various organisms. Despite not encoding proteins, miRNAs have been found to have significant implications in the onset and progression of complex human diseases. Methods: Conventional methods for miRNA functional enrichment analysis have certain limitations, and we proposed a novel method called MiRNA Set Enrichment Analysis based on Multi-source Heterogeneous Information Fusion (MHIF-MSEA). Three miRNA similarity networks (miRSN-DA, miRSN-GOA, and miRSN-PPI) were constructed in MHIF-MSEA. These networks were built based on miRNA-disease association, gene ontology (GO) annotation of target genes, and protein-protein interaction of target genes, respectively. These miRNA similarity networks were fused into a single similarity network with the averaging method. This fused network served as the input for the random walk with restart algorithm, which expanded the original miRNA list. Finally, MHIF-MSEA performed enrichment analysis on the expanded list. Results and Discussion: To determine the optimal network fusion approach, three case studies were introduced: colon cancer, breast cancer, and hepatocellular carcinoma. The experimental results revealed that the miRNA-miRNA association network constructed using miRSN-DA and miRSN-GOA exhibited superior performance as the input network. Furthermore, the MHIF-MSEA model performed enrichment analysis on differentially expressed miRNAs in breast cancer and hepatocellular carcinoma. The achieved p-values were 2.17e(-75) and 1.50e(-77), and the hit rates improved by 39.01% and 44.68% compared to traditional enrichment analysis methods, respectively. These results confirm that the MHIF-MSEA method enhances the identification of enriched miRNA sets by leveraging multiple sources of heterogeneous information, leading to improved insights into the functional implications of miRNAs in complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1223发布了新的文献求助10
刚刚
MinSheng完成签到,获得积分10
1秒前
1秒前
1秒前
芝芝椰奶冻完成签到,获得积分10
1秒前
科目三应助Motanka采纳,获得10
2秒前
微客发布了新的文献求助10
3秒前
Sisyphus发布了新的文献求助10
3秒前
苹果夜梦完成签到 ,获得积分10
3秒前
3秒前
ll完成签到,获得积分20
3秒前
毅雅发布了新的文献求助10
4秒前
4秒前
深情安青应助麻吉麻鸡采纳,获得10
4秒前
ZHOUZHEN完成签到,获得积分10
5秒前
xxr发布了新的文献求助10
5秒前
影子完成签到 ,获得积分10
5秒前
5秒前
小肥仔发布了新的文献求助10
6秒前
典雅的俊驰应助EVEN采纳,获得10
6秒前
丘比特应助Claire_zzz采纳,获得10
7秒前
李健应助真实的跳跳糖采纳,获得10
7秒前
YOUng关注了科研通微信公众号
7秒前
小鹿关注了科研通微信公众号
8秒前
yz完成签到,获得积分10
8秒前
长风发布了新的文献求助10
8秒前
momo发布了新的文献求助10
9秒前
jessie发布了新的文献求助10
9秒前
斯文败类应助Li采纳,获得30
10秒前
脆脆鲨发布了新的文献求助10
11秒前
充电宝应助uui采纳,获得10
11秒前
Owen应助心海微澜采纳,获得10
12秒前
12秒前
duan完成签到,获得积分10
13秒前
混子完成签到,获得积分10
13秒前
大何完成签到,获得积分10
13秒前
毅雅完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
winfree完成签到 ,获得积分0
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012