重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

ZleepAnlystNet: a novel deep learning model for automatic sleep stage scoring based on single-channel raw EEG data using separating training

计算机科学 人工智能 一般化 模式识别(心理学) 深度学习 脑电图 睡眠阶段 频道(广播) 原始数据 睡眠(系统调用) 机器学习 数学 多导睡眠图 医学 程序设计语言 操作系统 数学分析 计算机网络 精神科
作者
Nantawachara Jirakittayakorn,Yodchanan Wongsawat,Somsak Mitrirattanakul
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-60796-y
摘要

Abstract Numerous models for sleep stage scoring utilizing single-channel raw EEG signal have typically employed CNN and BiLSTM architectures. While these models, incorporating temporal information for sequence classification, demonstrate superior overall performance, they often exhibit low per-class performance for N1-stage, necessitating an adjustment of loss function. However, the efficacy of such adjustment is constrained by the training process. In this study, a pioneering training approach called separating training is introduced, alongside a novel model, to enhance performance. The developed model comprises 15 CNN models with varying loss function weights for feature extraction and 1 BiLSTM for sequence classification. Due to its architecture, this model cannot be trained using an end-to-end approach, necessitating separate training for each component using the Sleep-EDF dataset. Achieving an overall accuracy of 87.02%, MF1 of 82.09%, Kappa of 0.8221, and per-class F1-socres (W 90.34%, N1 54.23%, N2 89.53%, N3 88.96%, and REM 87.40%), our model demonstrates promising performance. Comparison with sleep technicians reveals a Kappa of 0.7015, indicating alignment with reference sleep stags. Additionally, cross-dataset validation and adaptation through training with the SHHS dataset yield an overall accuracy of 84.40%, MF1 of 74.96% and Kappa of 0.7785 when tested with the Sleep-EDF-13 dataset. These findings underscore the generalization potential in model architecture design facilitated by our novel training approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
233asd发布了新的文献求助10
刚刚
xixi很困发布了新的文献求助10
刚刚
苏木发布了新的文献求助10
刚刚
菠萝菠萝发布了新的文献求助10
刚刚
杜儒发布了新的文献求助30
刚刚
刚刚
penpen完成签到,获得积分10
1秒前
1秒前
魔幻小蚂蚁完成签到,获得积分10
1秒前
科研通AI6应助向浩天采纳,获得10
1秒前
2秒前
学术垃圾应助zain采纳,获得10
2秒前
QQ完成签到 ,获得积分10
2秒前
chh发布了新的文献求助30
2秒前
2秒前
Zo完成签到,获得积分10
3秒前
王雨晴完成签到,获得积分10
3秒前
zdfang完成签到,获得积分20
3秒前
慕青应助Leeyee采纳,获得20
3秒前
冷静白亦发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
幽默尔蓝发布了新的文献求助10
6秒前
Akim应助笑点低涟妖采纳,获得10
7秒前
8秒前
孤独千愁发布了新的文献求助10
8秒前
Owen应助Zo采纳,获得30
8秒前
8秒前
8秒前
9秒前
Lolo发布了新的文献求助10
9秒前
anling完成签到,获得积分10
9秒前
鱿鱼发布了新的文献求助20
9秒前
包容灵萱完成签到,获得积分10
9秒前
梓时发布了新的文献求助30
9秒前
yxli完成签到,获得积分10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654