亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ZleepAnlystNet: a novel deep learning model for automatic sleep stage scoring based on single-channel raw EEG data using separating training

计算机科学 人工智能 一般化 模式识别(心理学) 深度学习 脑电图 睡眠阶段 频道(广播) 原始数据 睡眠(系统调用) 机器学习 数学 多导睡眠图 医学 程序设计语言 操作系统 数学分析 计算机网络 精神科
作者
Nantawachara Jirakittayakorn,Yodchanan Wongsawat,Somsak Mitrirattanakul
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-60796-y
摘要

Abstract Numerous models for sleep stage scoring utilizing single-channel raw EEG signal have typically employed CNN and BiLSTM architectures. While these models, incorporating temporal information for sequence classification, demonstrate superior overall performance, they often exhibit low per-class performance for N1-stage, necessitating an adjustment of loss function. However, the efficacy of such adjustment is constrained by the training process. In this study, a pioneering training approach called separating training is introduced, alongside a novel model, to enhance performance. The developed model comprises 15 CNN models with varying loss function weights for feature extraction and 1 BiLSTM for sequence classification. Due to its architecture, this model cannot be trained using an end-to-end approach, necessitating separate training for each component using the Sleep-EDF dataset. Achieving an overall accuracy of 87.02%, MF1 of 82.09%, Kappa of 0.8221, and per-class F1-socres (W 90.34%, N1 54.23%, N2 89.53%, N3 88.96%, and REM 87.40%), our model demonstrates promising performance. Comparison with sleep technicians reveals a Kappa of 0.7015, indicating alignment with reference sleep stags. Additionally, cross-dataset validation and adaptation through training with the SHHS dataset yield an overall accuracy of 84.40%, MF1 of 74.96% and Kappa of 0.7785 when tested with the Sleep-EDF-13 dataset. These findings underscore the generalization potential in model architecture design facilitated by our novel training approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
iNk应助mlx采纳,获得30
8秒前
噢斯帕斯基关注了科研通微信公众号
8秒前
12秒前
充电宝应助ling采纳,获得10
15秒前
啦啦啦发布了新的文献求助10
17秒前
20秒前
27秒前
37秒前
47秒前
NattyPoe发布了新的文献求助10
53秒前
1分钟前
1分钟前
1分钟前
lllll1243完成签到,获得积分10
1分钟前
2分钟前
Lucas应助靓丽的魔镜采纳,获得10
2分钟前
寒冷的妙梦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
欣怡完成签到 ,获得积分10
3分钟前
3分钟前
靓丽的魔镜完成签到,获得积分20
3分钟前
阿洁发布了新的文献求助30
3分钟前
3分钟前
ccm应助阿洁采纳,获得30
3分钟前
3分钟前
4分钟前
ling发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ersheng发布了新的文献求助10
4分钟前
Richard完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639688
求助须知:如何正确求助?哪些是违规求助? 4749790
关于积分的说明 15007137
捐赠科研通 4797851
什么是DOI,文献DOI怎么找? 2563972
邀请新用户注册赠送积分活动 1522849
关于科研通互助平台的介绍 1482518