ZleepAnlystNet: a novel deep learning model for automatic sleep stage scoring based on single-channel raw EEG data using separating training

计算机科学 人工智能 一般化 模式识别(心理学) 深度学习 脑电图 睡眠阶段 频道(广播) 原始数据 睡眠(系统调用) 机器学习 数学 多导睡眠图 医学 程序设计语言 操作系统 数学分析 计算机网络 精神科
作者
Nantawachara Jirakittayakorn,Yodchanan Wongsawat,Somsak Mitrirattanakul
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-60796-y
摘要

Abstract Numerous models for sleep stage scoring utilizing single-channel raw EEG signal have typically employed CNN and BiLSTM architectures. While these models, incorporating temporal information for sequence classification, demonstrate superior overall performance, they often exhibit low per-class performance for N1-stage, necessitating an adjustment of loss function. However, the efficacy of such adjustment is constrained by the training process. In this study, a pioneering training approach called separating training is introduced, alongside a novel model, to enhance performance. The developed model comprises 15 CNN models with varying loss function weights for feature extraction and 1 BiLSTM for sequence classification. Due to its architecture, this model cannot be trained using an end-to-end approach, necessitating separate training for each component using the Sleep-EDF dataset. Achieving an overall accuracy of 87.02%, MF1 of 82.09%, Kappa of 0.8221, and per-class F1-socres (W 90.34%, N1 54.23%, N2 89.53%, N3 88.96%, and REM 87.40%), our model demonstrates promising performance. Comparison with sleep technicians reveals a Kappa of 0.7015, indicating alignment with reference sleep stags. Additionally, cross-dataset validation and adaptation through training with the SHHS dataset yield an overall accuracy of 84.40%, MF1 of 74.96% and Kappa of 0.7785 when tested with the Sleep-EDF-13 dataset. These findings underscore the generalization potential in model architecture design facilitated by our novel training approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jianyulv应助司空博涛采纳,获得10
刚刚
魏lin发布了新的文献求助10
1秒前
掠影发布了新的文献求助10
1秒前
1秒前
星辰大海应助liushu采纳,获得10
1秒前
Stella应助zjmm采纳,获得10
1秒前
1秒前
汉堡包应助婧婧婧采纳,获得10
2秒前
2秒前
彭于晏应助59采纳,获得10
2秒前
buno发布了新的文献求助30
2秒前
搜集达人应助专注的芷蕾采纳,获得10
3秒前
3秒前
Stella应助阔达的双双采纳,获得10
3秒前
3秒前
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
一叶知秋应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得20
4秒前
核桃应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
贝贝应助科研通管家采纳,获得150
4秒前
雯雯发布了新的文献求助10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Wendy发布了新的文献求助10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得30
4秒前
YYYYZ完成签到,获得积分10
4秒前
核桃应助科研通管家采纳,获得10
4秒前
xianglinnnn发布了新的文献求助30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240