Mastering the Lattice Strain in Bismuth‐Based Electrocatalysts for Efficient CO2‐to‐Formate Conversion

材料科学 格式化 密度泛函理论 格子(音乐) 纳米柱 选择性 纳米技术 化学工程 化学物理 催化作用 计算化学 纳米结构 生物化学 化学 物理 声学 工程类
作者
Xinyan Liu,Haiyan Zheng,Qiming Sun,Jingting He,Xiaohui Yao,Chunyi Sun,Guo‐Gang Shan,Min Zhang,Changyan Zhu,Zhong‐Min Su,Xinlong Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (34) 被引量:28
标识
DOI:10.1002/adfm.202400928
摘要

Abstract Tuning the lattice strain of catalysts represents a powerful strategy to alter their electronic structures and ultimately regulate catalytic performance. Electrocatalytic CO 2 reduction is a promising avenue to accomplish the carbon‐neutral cycle, however, there still lacks a distinct and systematic understanding of the lattice strain effect in CO 2 electrochemical conversion. In this work, the influence of lattice strain on Bi (012) facets to formate production is studied. The pre‐executed density functional theory (DFT) calculations reveal that lattice compression promotes the wrinkling of exposed Bi surface and increases the total density of state (DOS) of active sites at the Fermi level. As the gradual intensification of lattice contraction, the selectivity of CO 2 reduction exhibits a volcanic alteration, with an optimal lattice contraction of 3%. Experimentally synthesized Bi 2 O 2 CO 3 /Bi heterogeneous catalyst confirms the effect of lattice compression. When compression reaches −3.04% on Bi (012) facets, the catalyst possesses the highest Faraday efficiency (FE) of 96.17% at −1.2 V RHE and an industrially scalable current density of −600 mA cm −2 . Additionally, in seawater‐based electrolysis, the catalyst also exhibits excellent remarkable FE of 95.43% of formate production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助qiudaoyv11采纳,获得10
2秒前
KWANZ完成签到,获得积分10
4秒前
念想完成签到 ,获得积分10
4秒前
4秒前
4秒前
田様应助ming采纳,获得10
5秒前
886完成签到,获得积分10
5秒前
杨子欣完成签到,获得积分10
5秒前
LJHUA完成签到,获得积分10
5秒前
XF发布了新的文献求助10
6秒前
michen发布了新的文献求助10
6秒前
6秒前
6秒前
senli2018发布了新的文献求助10
6秒前
neroil完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
LY123发布了新的文献求助10
7秒前
科研通AI2S应助雾让空山采纳,获得10
8秒前
9秒前
10秒前
没你了完成签到 ,获得积分10
10秒前
浮游应助年轻纸飞机采纳,获得10
11秒前
11秒前
柴胡完成签到,获得积分10
13秒前
喵喵喵发布了新的文献求助20
13秒前
nulidexin完成签到,获得积分20
13秒前
ZSS_ism完成签到,获得积分10
13秒前
愚蠢的牛马完成签到,获得积分10
13秒前
14秒前
诗谙发布了新的文献求助10
14秒前
15秒前
www发布了新的文献求助10
15秒前
Akim应助疑夕采纳,获得10
15秒前
久顾南川发布了新的文献求助20
16秒前
01完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
倒头睡不醒完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675283
求助须知:如何正确求助?哪些是违规求助? 4945244
关于积分的说明 15152572
捐赠科研通 4834559
什么是DOI,文献DOI怎么找? 2589536
邀请新用户注册赠送积分活动 1543243
关于科研通互助平台的介绍 1501110