Annotation-free prediction of treatment-specific tissue outcome from 4D CT perfusion imaging in acute ischemic stroke

医学 溶栓 冲程(发动机) 灌注 灌注扫描 放射科 二元分类 概率逻辑 模式识别(心理学) 机器学习 计算机科学 心肌梗塞 人工智能 心脏病学 机械工程 支持向量机 工程类
作者
Alejandro Gutierrez,Kimberly Amador,Anthony Winder,Matthias Wilms,Jens Fiehler,Nils D. Forkert
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:114: 102376-102376 被引量:1
标识
DOI:10.1016/j.compmedimag.2024.102376
摘要

Acute ischemic stroke is a critical health condition that requires timely intervention. Following admission, clinicians typically use perfusion imaging to facilitate treatment decision-making. While deep learning models leveraging perfusion data have demonstrated the ability to predict post-treatment tissue infarction for individual patients, predictions are often represented as binary or probabilistic masks that are not straightforward to interpret or easy to obtain. Moreover, these models typically rely on large amounts of subjectively segmented data and non-standard perfusion analysis techniques. To address these challenges, we propose a novel deep learning approach that directly predicts follow-up computed tomography images from full spatio-temporal 4D perfusion scans through a temporal compression. The results show that this method leads to realistic follow-up image predictions containing the infarcted tissue outcomes. The proposed compression method achieves comparable prediction results to using perfusion maps as inputs but without the need for perfusion analysis or arterial input function selection. Additionally, separate models trained on 45 patients treated with thrombolysis and 102 treated with thrombectomy showed that each model correctly captured the different patient-specific treatment effects as shown by image difference maps. The findings of this work clearly highlight the potential of our method to provide interpretable stroke treatment decision support without requiring manual annotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻采波完成签到,获得积分10
1秒前
所所应助祖琦采纳,获得10
1秒前
椿·发布了新的文献求助10
2秒前
2秒前
会飞的猪发布了新的文献求助10
2秒前
阳光下的微风完成签到,获得积分10
3秒前
梦想家发布了新的文献求助10
3秒前
4秒前
4秒前
老肥完成签到,获得积分10
5秒前
5秒前
无花果应助YuchaoJia采纳,获得10
5秒前
ajuehdj完成签到,获得积分10
6秒前
Fang发布了新的文献求助10
6秒前
年轻采波发布了新的文献求助10
6秒前
万能图书馆应助橘涂采纳,获得10
7秒前
liun完成签到,获得积分10
7秒前
优雅寒凡发布了新的文献求助10
7秒前
7秒前
天很蓝完成签到,获得积分10
9秒前
9秒前
a成发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
12秒前
CodeCraft应助QYPANG采纳,获得10
13秒前
仰卧起坐完成签到,获得积分10
14秒前
14秒前
SciGPT应助一一采纳,获得30
14秒前
开心的爆米花完成签到,获得积分10
15秒前
15秒前
16秒前
舒心的元槐完成签到 ,获得积分10
16秒前
李lj发布了新的文献求助10
17秒前
叶95发布了新的文献求助10
17秒前
zh发布了新的文献求助30
17秒前
Jasper应助qiuling采纳,获得10
18秒前
19秒前
tiny_face发布了新的文献求助10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352