Annotation-free prediction of treatment-specific tissue outcome from 4D CT perfusion imaging in acute ischemic stroke

医学 溶栓 冲程(发动机) 灌注 灌注扫描 放射科 二元分类 概率逻辑 模式识别(心理学) 机器学习 计算机科学 心肌梗塞 人工智能 心脏病学 机械工程 支持向量机 工程类
作者
Alejandro Gutierrez,Kimberly Amador,Anthony Winder,Matthias Wilms,Jens Fiehler,Nils D. Forkert
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:114: 102376-102376
标识
DOI:10.1016/j.compmedimag.2024.102376
摘要

Acute ischemic stroke is a critical health condition that requires timely intervention. Following admission, clinicians typically use perfusion imaging to facilitate treatment decision-making. While deep learning models leveraging perfusion data have demonstrated the ability to predict post-treatment tissue infarction for individual patients, predictions are often represented as binary or probabilistic masks that are not straightforward to interpret or easy to obtain. Moreover, these models typically rely on large amounts of subjectively segmented data and non-standard perfusion analysis techniques. To address these challenges, we propose a novel deep learning approach that directly predicts follow-up computed tomography images from full spatio-temporal 4D perfusion scans through a temporal compression. The results show that this method leads to realistic follow-up image predictions containing the infarcted tissue outcomes. The proposed compression method achieves comparable prediction results to using perfusion maps as inputs but without the need for perfusion analysis or arterial input function selection. Additionally, separate models trained on 45 patients treated with thrombolysis and 102 treated with thrombectomy showed that each model correctly captured the different patient-specific treatment effects as shown by image difference maps. The findings of this work clearly highlight the potential of our method to provide interpretable stroke treatment decision support without requiring manual annotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子完成签到,获得积分10
1秒前
divedown发布了新的文献求助10
1秒前
糖果完成签到,获得积分20
2秒前
2秒前
华仔应助文静半鬼采纳,获得10
2秒前
2秒前
CipherSage应助Taylor采纳,获得10
4秒前
ANDUIN完成签到,获得积分10
4秒前
RoboSAMA完成签到,获得积分10
7秒前
丘比特应助111采纳,获得10
8秒前
执笔客完成签到,获得积分10
12秒前
yankeke完成签到,获得积分10
13秒前
可可可刻完成签到,获得积分10
13秒前
在水一方应助内向的白玉采纳,获得10
21秒前
26秒前
xrl完成签到 ,获得积分10
29秒前
休思完成签到 ,获得积分10
30秒前
31秒前
31秒前
32秒前
Micale发布了新的文献求助10
32秒前
lc关闭了lc文献求助
32秒前
sunzyu发布了新的文献求助10
32秒前
寻雪完成签到,获得积分10
35秒前
35秒前
褚浩然发布了新的文献求助10
36秒前
VDC应助青4096采纳,获得10
36秒前
36秒前
a_jumper发布了新的文献求助10
37秒前
WPYZJ完成签到 ,获得积分10
39秒前
白又白发布了新的文献求助30
40秒前
潮汐完成签到,获得积分20
41秒前
小程别放弃完成签到,获得积分10
44秒前
46秒前
50秒前
褚浩然完成签到,获得积分10
51秒前
VDC应助大家的好朋友采纳,获得30
52秒前
52秒前
魔幻的雁发布了新的文献求助10
54秒前
糖果发布了新的文献求助10
57秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 800
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210755
求助须知:如何正确求助?哪些是违规求助? 2859947
关于积分的说明 8121707
捐赠科研通 2525516
什么是DOI,文献DOI怎么找? 1359388
科研通“疑难数据库(出版商)”最低求助积分说明 642979
邀请新用户注册赠送积分活动 614856