已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid and sparse reconstruction of high-speed steady-state and transient compressible flow fields using physics-informed graph neural networks

爆炸物 算法 人工神经网络 流量(数学) 物理 领域(数学) 计算机科学 人工智能 机械 数学 化学 有机化学 纯数学
作者
Jiang-Zhou Peng,Zhi-Qiao Wang,Xiaoli Rong,Mei Mei,Mingyang Wang,Yong He,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:1
标识
DOI:10.1063/5.0202789
摘要

Explosion flow fields are characterized by shock waves with varying intensity and position (i.e., explosive loads), which are the primary causes of structural damage. Accurate and rapid prediction of explosive loads is crucial for structural blast-resistant design and daily security management. While existing empirical models and numerical simulation methods can capture the propagation characteristics of explosive shock waves, high-precision simulation requires a massive computational workload, which is insufficient to meet the fast computational demands of various explosive scenarios. To address this contradiction, this study constructed a sparse reconstruction model for two-dimensional explosion fields based on machine learning algorithms. The model utilizes sparse observational data to establish a mapping relationship to the distribution of the entire flow field. The model is built by a physics-informed graph neural network (PIGN). The graph neural network is employed to associate node features, while the physical network is utilized to control model convergence, aiming to enhance model performance. Using the constructed dataset, the PIGN model was tested. Performance and generalization capabilities of the model were assessed by comparing its results with numerical simulation. This evaluation analyzed the relative error distribution and error statistical results of the reconstructed flow field. The results indicate that the PIGN model can effectively reconstruct explosion fields, with an average error in the reconstructed flow field below 4%. Furthermore, when the number of probe points reaches 10, the average error of the flow field reconstructed by the model is close to 6%. This model not only provides a highly reliable distribution of explosion overpressure and pressure-time variations but also, with a well-trained model, accomplishes flow field reconstruction within 1 ms. It offers a novel approach for achieving rapid and reasonable prediction of explosion fields or two-dimensional compressible flow fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wujt完成签到 ,获得积分10
2秒前
Shelley发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
英俊枫完成签到,获得积分0
5秒前
百里一笑发布了新的文献求助10
6秒前
邮电部诗人完成签到,获得积分10
7秒前
健忘的晓小完成签到 ,获得积分10
8秒前
耶耶完成签到 ,获得积分10
8秒前
月见完成签到 ,获得积分10
10秒前
10秒前
舒心聪展完成签到,获得积分10
10秒前
SciGPT应助陈M雯采纳,获得10
12秒前
18秒前
18秒前
18秒前
19秒前
舒心聪展发布了新的文献求助10
20秒前
Murphy完成签到 ,获得积分10
21秒前
su完成签到 ,获得积分10
21秒前
Yu发布了新的文献求助10
22秒前
陈M雯发布了新的文献求助10
25秒前
时光完成签到 ,获得积分10
26秒前
李健的粉丝团团长应助Yu采纳,获得10
27秒前
月落无痕97完成签到 ,获得积分0
27秒前
科研通AI6.1应助skye采纳,获得10
28秒前
悄悄完成签到 ,获得积分10
29秒前
30秒前
魔幻安南完成签到 ,获得积分10
31秒前
31秒前
刘欣欢完成签到 ,获得积分10
32秒前
杜客发布了新的文献求助10
32秒前
33秒前
lht完成签到 ,获得积分10
33秒前
Ava应助土豆小狗勇敢飞采纳,获得10
33秒前
合适不悔发布了新的文献求助10
34秒前
SYSUCC完成签到,获得积分20
35秒前
臻酒发布了新的文献求助10
35秒前
37秒前
37秒前
JOY完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763557
求助须知:如何正确求助?哪些是违规求助? 5541880
关于积分的说明 15404946
捐赠科研通 4899261
什么是DOI,文献DOI怎么找? 2635432
邀请新用户注册赠送积分活动 1583495
关于科研通互助平台的介绍 1538634