Rapid and sparse reconstruction of high-speed steady-state and transient compressible flow fields using physics-informed graph neural networks

爆炸物 算法 人工神经网络 流量(数学) 物理 领域(数学) 计算机科学 人工智能 机械 数学 化学 有机化学 纯数学
作者
Jiang-Zhou Peng,Zhi-Qiao Wang,Xiaoli Rong,Mei Mei,Mingyang Wang,Yong He,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:1
标识
DOI:10.1063/5.0202789
摘要

Explosion flow fields are characterized by shock waves with varying intensity and position (i.e., explosive loads), which are the primary causes of structural damage. Accurate and rapid prediction of explosive loads is crucial for structural blast-resistant design and daily security management. While existing empirical models and numerical simulation methods can capture the propagation characteristics of explosive shock waves, high-precision simulation requires a massive computational workload, which is insufficient to meet the fast computational demands of various explosive scenarios. To address this contradiction, this study constructed a sparse reconstruction model for two-dimensional explosion fields based on machine learning algorithms. The model utilizes sparse observational data to establish a mapping relationship to the distribution of the entire flow field. The model is built by a physics-informed graph neural network (PIGN). The graph neural network is employed to associate node features, while the physical network is utilized to control model convergence, aiming to enhance model performance. Using the constructed dataset, the PIGN model was tested. Performance and generalization capabilities of the model were assessed by comparing its results with numerical simulation. This evaluation analyzed the relative error distribution and error statistical results of the reconstructed flow field. The results indicate that the PIGN model can effectively reconstruct explosion fields, with an average error in the reconstructed flow field below 4%. Furthermore, when the number of probe points reaches 10, the average error of the flow field reconstructed by the model is close to 6%. This model not only provides a highly reliable distribution of explosion overpressure and pressure-time variations but also, with a well-trained model, accomplishes flow field reconstruction within 1 ms. It offers a novel approach for achieving rapid and reasonable prediction of explosion fields or two-dimensional compressible flow fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
牛哥完成签到 ,获得积分10
2秒前
5秒前
中杯西瓜冰完成签到,获得积分10
6秒前
斯文败类应助moian2采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
仪式感完成签到,获得积分20
7秒前
情怀应助vidi采纳,获得10
8秒前
9秒前
852应助杨仔采纳,获得10
9秒前
10秒前
凉宫八月发布了新的文献求助10
10秒前
12秒前
YINGYAN应助wu采纳,获得20
13秒前
13秒前
戚小发布了新的文献求助10
14秒前
王丽娟应助李静静采纳,获得10
15秒前
16秒前
SJJ应助啵啵冰采纳,获得30
16秒前
优秀芷波完成签到 ,获得积分10
18秒前
老迟到的梦旋完成签到 ,获得积分10
19秒前
moian2发布了新的文献求助10
20秒前
情怀应助虎啊虎啊采纳,获得10
20秒前
20秒前
21秒前
彭于晏应助fufu采纳,获得10
22秒前
时不言完成签到 ,获得积分10
22秒前
orixero应助holly采纳,获得10
23秒前
夏夜完成签到 ,获得积分10
25秒前
apple红了完成签到 ,获得积分10
26秒前
泥豪泥嚎完成签到 ,获得积分10
26秒前
27秒前
Sylvia发布了新的文献求助10
27秒前
Vanessa完成签到 ,获得积分10
28秒前
drfang完成签到 ,获得积分10
28秒前
一只小锦鲤完成签到 ,获得积分10
28秒前
28秒前
隔壁海绵宝宝完成签到,获得积分10
31秒前
33秒前
yunyueqixun完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704