Rapid and sparse reconstruction of high-speed steady-state and transient compressible flow fields using physics-informed graph neural networks

爆炸物 算法 人工神经网络 流量(数学) 物理 领域(数学) 计算机科学 人工智能 机械 数学 化学 有机化学 纯数学
作者
Jiang-Zhou Peng,Zhi-Qiao Wang,Xiaoli Rong,Mei Mei,Mingyang Wang,Yong He,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:1
标识
DOI:10.1063/5.0202789
摘要

Explosion flow fields are characterized by shock waves with varying intensity and position (i.e., explosive loads), which are the primary causes of structural damage. Accurate and rapid prediction of explosive loads is crucial for structural blast-resistant design and daily security management. While existing empirical models and numerical simulation methods can capture the propagation characteristics of explosive shock waves, high-precision simulation requires a massive computational workload, which is insufficient to meet the fast computational demands of various explosive scenarios. To address this contradiction, this study constructed a sparse reconstruction model for two-dimensional explosion fields based on machine learning algorithms. The model utilizes sparse observational data to establish a mapping relationship to the distribution of the entire flow field. The model is built by a physics-informed graph neural network (PIGN). The graph neural network is employed to associate node features, while the physical network is utilized to control model convergence, aiming to enhance model performance. Using the constructed dataset, the PIGN model was tested. Performance and generalization capabilities of the model were assessed by comparing its results with numerical simulation. This evaluation analyzed the relative error distribution and error statistical results of the reconstructed flow field. The results indicate that the PIGN model can effectively reconstruct explosion fields, with an average error in the reconstructed flow field below 4%. Furthermore, when the number of probe points reaches 10, the average error of the flow field reconstructed by the model is close to 6%. This model not only provides a highly reliable distribution of explosion overpressure and pressure-time variations but also, with a well-trained model, accomplishes flow field reconstruction within 1 ms. It offers a novel approach for achieving rapid and reasonable prediction of explosion fields or two-dimensional compressible flow fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Hhbbb发布了新的文献求助10
5秒前
mk发布了新的文献求助10
6秒前
桐桐应助霍焱采纳,获得10
7秒前
羊村霸总懒大王完成签到 ,获得积分10
7秒前
z777完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
爆米花应助guojingjing采纳,获得10
12秒前
14秒前
俭朴晓凡应助cenghao采纳,获得50
14秒前
酷波er应助cenghao采纳,获得10
14秒前
深情安青应助点儿采纳,获得10
15秒前
浮浮世世发布了新的文献求助10
17秒前
gy是最棒的完成签到,获得积分10
18秒前
21秒前
Angel发布了新的文献求助10
21秒前
23秒前
抽抽完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
乐观忆秋发布了新的文献求助10
26秒前
26秒前
26秒前
guo完成签到,获得积分10
26秒前
晓磊发布了新的文献求助30
26秒前
上官若男应助Bruce采纳,获得10
27秒前
27秒前
JamesPei应助hu采纳,获得10
28秒前
28秒前
28秒前
不狗不吹发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
NexusExplorer应助顺心的梦柏采纳,获得10
31秒前
霍焱发布了新的文献求助10
31秒前
32秒前
cenghao发布了新的文献求助10
32秒前
。。完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770240
求助须知:如何正确求助?哪些是违规求助? 5583672
关于积分的说明 15423777
捐赠科研通 4903786
什么是DOI,文献DOI怎么找? 2638350
邀请新用户注册赠送积分活动 1586204
关于科研通互助平台的介绍 1541370