Rapid and sparse reconstruction of high-speed steady-state and transient compressible flow fields using physics-informed graph neural networks

爆炸物 算法 人工神经网络 流量(数学) 物理 领域(数学) 计算机科学 人工智能 机械 数学 化学 有机化学 纯数学
作者
Jiang-Zhou Peng,Zhi-Qiao Wang,Xiaoli Rong,Mei Mei,Mingyang Wang,Yong He,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:1
标识
DOI:10.1063/5.0202789
摘要

Explosion flow fields are characterized by shock waves with varying intensity and position (i.e., explosive loads), which are the primary causes of structural damage. Accurate and rapid prediction of explosive loads is crucial for structural blast-resistant design and daily security management. While existing empirical models and numerical simulation methods can capture the propagation characteristics of explosive shock waves, high-precision simulation requires a massive computational workload, which is insufficient to meet the fast computational demands of various explosive scenarios. To address this contradiction, this study constructed a sparse reconstruction model for two-dimensional explosion fields based on machine learning algorithms. The model utilizes sparse observational data to establish a mapping relationship to the distribution of the entire flow field. The model is built by a physics-informed graph neural network (PIGN). The graph neural network is employed to associate node features, while the physical network is utilized to control model convergence, aiming to enhance model performance. Using the constructed dataset, the PIGN model was tested. Performance and generalization capabilities of the model were assessed by comparing its results with numerical simulation. This evaluation analyzed the relative error distribution and error statistical results of the reconstructed flow field. The results indicate that the PIGN model can effectively reconstruct explosion fields, with an average error in the reconstructed flow field below 4%. Furthermore, when the number of probe points reaches 10, the average error of the flow field reconstructed by the model is close to 6%. This model not only provides a highly reliable distribution of explosion overpressure and pressure-time variations but also, with a well-trained model, accomplishes flow field reconstruction within 1 ms. It offers a novel approach for achieving rapid and reasonable prediction of explosion fields or two-dimensional compressible flow fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
纸柒发布了新的文献求助10
刚刚
自信尔竹完成签到,获得积分10
刚刚
1秒前
Yuki完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
犹豫花卷完成签到 ,获得积分10
4秒前
orixero应助朴实香露采纳,获得10
5秒前
5秒前
5秒前
宋宋syi完成签到 ,获得积分10
6秒前
一期一会发布了新的文献求助10
7秒前
Yuelong发布了新的文献求助10
8秒前
情怀应助sam采纳,获得10
11秒前
13秒前
15秒前
fin完成签到,获得积分10
16秒前
17秒前
脑洞疼应助秋夏山采纳,获得10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
Jasper应助123321采纳,获得10
21秒前
21秒前
知了完成签到,获得积分10
22秒前
诸葛书虫应助孙靖博采纳,获得10
23秒前
23秒前
斯文败类应助孙靖博采纳,获得10
24秒前
善学以致用应助孙靖博采纳,获得30
24秒前
量子星尘发布了新的文献求助10
24秒前
传奇3应助Ray采纳,获得10
25秒前
Cooper应助芳芳子呀采纳,获得10
25秒前
飓风小羊完成签到 ,获得积分10
25秒前
panfengxing完成签到,获得积分10
25秒前
Lynne发布了新的文献求助10
25秒前
刘强发布了新的文献求助10
27秒前
大气魂幽发布了新的文献求助10
27秒前
Akoasm完成签到,获得积分20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787048
求助须知:如何正确求助?哪些是违规求助? 5697004
关于积分的说明 15471171
捐赠科研通 4915690
什么是DOI,文献DOI怎么找? 2645870
邀请新用户注册赠送积分活动 1593553
关于科研通互助平台的介绍 1547896