已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid and sparse reconstruction of high-speed steady-state and transient compressible flow fields using physics-informed graph neural networks

爆炸物 算法 人工神经网络 流量(数学) 物理 领域(数学) 计算机科学 人工智能 机械 数学 化学 有机化学 纯数学
作者
Jiang-Zhou Peng,Zhi-Qiao Wang,Xiaoli Rong,Mei Mei,Mingyang Wang,Yong He,Wei‐Tao Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:1
标识
DOI:10.1063/5.0202789
摘要

Explosion flow fields are characterized by shock waves with varying intensity and position (i.e., explosive loads), which are the primary causes of structural damage. Accurate and rapid prediction of explosive loads is crucial for structural blast-resistant design and daily security management. While existing empirical models and numerical simulation methods can capture the propagation characteristics of explosive shock waves, high-precision simulation requires a massive computational workload, which is insufficient to meet the fast computational demands of various explosive scenarios. To address this contradiction, this study constructed a sparse reconstruction model for two-dimensional explosion fields based on machine learning algorithms. The model utilizes sparse observational data to establish a mapping relationship to the distribution of the entire flow field. The model is built by a physics-informed graph neural network (PIGN). The graph neural network is employed to associate node features, while the physical network is utilized to control model convergence, aiming to enhance model performance. Using the constructed dataset, the PIGN model was tested. Performance and generalization capabilities of the model were assessed by comparing its results with numerical simulation. This evaluation analyzed the relative error distribution and error statistical results of the reconstructed flow field. The results indicate that the PIGN model can effectively reconstruct explosion fields, with an average error in the reconstructed flow field below 4%. Furthermore, when the number of probe points reaches 10, the average error of the flow field reconstructed by the model is close to 6%. This model not only provides a highly reliable distribution of explosion overpressure and pressure-time variations but also, with a well-trained model, accomplishes flow field reconstruction within 1 ms. It offers a novel approach for achieving rapid and reasonable prediction of explosion fields or two-dimensional compressible flow fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tosania发布了新的文献求助10
3秒前
朝朝发布了新的文献求助10
4秒前
疯狂的凡梦完成签到 ,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
12秒前
14秒前
14秒前
14秒前
14秒前
耍酷鼠标完成签到 ,获得积分0
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
19秒前
wenge发布了新的文献求助10
23秒前
tosania完成签到,获得积分10
23秒前
顺利梦之完成签到 ,获得积分10
29秒前
简单问儿完成签到 ,获得积分10
29秒前
了晨完成签到 ,获得积分10
32秒前
wenge完成签到,获得积分20
32秒前
33秒前
火山完成签到 ,获得积分10
33秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749