已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Skip-Step Contrastive Predictive Coding for Time Series Anomaly Detection

计算机科学 异常检测 系列(地层学) 时间序列 预测编码 编码(社会科学) 人工智能 模式识别(心理学) 算法 机器学习 数学 统计 地质学 古生物学
作者
Kexin Zhang,Qingsong Wen,Chaoli Zhang,Liang Sun,Yong Liu
标识
DOI:10.1109/icassp48485.2024.10447104
摘要

Self-supervised learning (SSL) shows impressive performance in many tasks lacking sufficient labels. In this paper, we study SSL in time series anomaly detection (TSAD) by incorporating the characteristics of time series data. Specifically, we build an anomaly detection algorithm consisting of global pattern learning and local association learning. The global pattern learning module builds encoder and decoder to reconstruct the raw time series data to detect global anomalies. To complement the limitation of the global pattern learning that ignores local associations between anomaly points and their adjacent windows, we design a local association learning module, which leverages contrastive predictive coding (CPC) to transform the identification of anomaly points into positive pairs identification. Motivated by the observation that adjusting the distance between the history window and the time point to be detected directly impacts the detection performance in the CPC framework, we further propose a skip-step CPC scheme in the local association learning module which adjusts the distance for better construction of the positive pairs and detection results. The experimental results show that the proposed algorithm achieves superior performance on SMD and PSM datasets in comparison with 12 state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵完成签到 ,获得积分10
3秒前
xiaofang发布了新的文献求助10
3秒前
5秒前
不安的松完成签到 ,获得积分10
5秒前
努力加油煤老八完成签到 ,获得积分0
5秒前
星辰大海应助标致初晴采纳,获得10
6秒前
8秒前
wwbb发布了新的文献求助10
9秒前
10秒前
KKUMee完成签到,获得积分10
12秒前
xiaofang完成签到,获得积分10
13秒前
Moo5_zzZ发布了新的文献求助10
14秒前
14秒前
ZZQ完成签到,获得积分10
14秒前
Percy完成签到 ,获得积分10
14秒前
YJH完成签到,获得积分10
15秒前
赘婿应助貔貅采纳,获得10
15秒前
trophozoite完成签到 ,获得积分10
18秒前
18秒前
起风了完成签到 ,获得积分10
18秒前
20秒前
21秒前
云梦江海应助wwbb采纳,获得20
21秒前
21秒前
24秒前
应然忆完成签到 ,获得积分10
25秒前
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
思源应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
曾经的臻完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681089
求助须知:如何正确求助?哪些是违规求助? 5004322
关于积分的说明 15174896
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594437
邀请新用户注册赠送积分活动 1547542
关于科研通互助平台的介绍 1505470