Skip-Step Contrastive Predictive Coding for Time Series Anomaly Detection

计算机科学 异常检测 系列(地层学) 时间序列 预测编码 编码(社会科学) 人工智能 模式识别(心理学) 算法 机器学习 数学 统计 地质学 古生物学
作者
Kexin Zhang,Qingsong Wen,Chaoli Zhang,Liang Sun,Yong Liu
标识
DOI:10.1109/icassp48485.2024.10447104
摘要

Self-supervised learning (SSL) shows impressive performance in many tasks lacking sufficient labels. In this paper, we study SSL in time series anomaly detection (TSAD) by incorporating the characteristics of time series data. Specifically, we build an anomaly detection algorithm consisting of global pattern learning and local association learning. The global pattern learning module builds encoder and decoder to reconstruct the raw time series data to detect global anomalies. To complement the limitation of the global pattern learning that ignores local associations between anomaly points and their adjacent windows, we design a local association learning module, which leverages contrastive predictive coding (CPC) to transform the identification of anomaly points into positive pairs identification. Motivated by the observation that adjusting the distance between the history window and the time point to be detected directly impacts the detection performance in the CPC framework, we further propose a skip-step CPC scheme in the local association learning module which adjusts the distance for better construction of the positive pairs and detection results. The experimental results show that the proposed algorithm achieves superior performance on SMD and PSM datasets in comparison with 12 state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚱别跳发布了新的文献求助10
刚刚
开放铅笔发布了新的文献求助10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
ypp完成签到,获得积分10
1秒前
在水一方应助阿龙采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
BareBear应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
852应助yhh采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
ludong_0应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
鄂惜霜发布了新的文献求助30
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
临时演员完成签到,获得积分0
2秒前
科研通AI2S应助福西西采纳,获得10
2秒前
畅快大象发布了新的文献求助10
2秒前
大个应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
Thea完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Animagus应助科研通管家采纳,获得20
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480141
求助须知:如何正确求助?哪些是违规求助? 4581340
关于积分的说明 14380127
捐赠科研通 4509924
什么是DOI,文献DOI怎么找? 2471597
邀请新用户注册赠送积分活动 1457999
关于科研通互助平台的介绍 1431756