Skip-Step Contrastive Predictive Coding for Time Series Anomaly Detection

计算机科学 异常检测 系列(地层学) 时间序列 预测编码 编码(社会科学) 人工智能 模式识别(心理学) 算法 机器学习 数学 统计 地质学 古生物学
作者
Kexin Zhang,Qingsong Wen,Chaoli Zhang,Liang Sun,Yong Liu
标识
DOI:10.1109/icassp48485.2024.10447104
摘要

Self-supervised learning (SSL) shows impressive performance in many tasks lacking sufficient labels. In this paper, we study SSL in time series anomaly detection (TSAD) by incorporating the characteristics of time series data. Specifically, we build an anomaly detection algorithm consisting of global pattern learning and local association learning. The global pattern learning module builds encoder and decoder to reconstruct the raw time series data to detect global anomalies. To complement the limitation of the global pattern learning that ignores local associations between anomaly points and their adjacent windows, we design a local association learning module, which leverages contrastive predictive coding (CPC) to transform the identification of anomaly points into positive pairs identification. Motivated by the observation that adjusting the distance between the history window and the time point to be detected directly impacts the detection performance in the CPC framework, we further propose a skip-step CPC scheme in the local association learning module which adjusts the distance for better construction of the positive pairs and detection results. The experimental results show that the proposed algorithm achieves superior performance on SMD and PSM datasets in comparison with 12 state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Colo发布了新的文献求助10
2秒前
简爱完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
小莫完成签到 ,获得积分10
10秒前
推土机爱学习完成签到 ,获得积分10
12秒前
拉长的诗蕊完成签到,获得积分10
13秒前
千玺的小粉丝儿完成签到,获得积分10
16秒前
从容的水壶完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
19秒前
达尔文1完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
28秒前
alice01987完成签到,获得积分10
29秒前
Jinyang完成签到 ,获得积分10
31秒前
达尔文完成签到 ,获得积分10
34秒前
36秒前
量子星尘发布了新的文献求助10
41秒前
久旱逢甘霖完成签到 ,获得积分10
42秒前
谢陈完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
46秒前
48秒前
NEPUJuly发布了新的文献求助10
51秒前
jun完成签到 ,获得积分10
53秒前
小不完成签到 ,获得积分10
54秒前
oleskarabach发布了新的文献求助10
56秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
spring完成签到 ,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xiuxiu125发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856