氨
氧化物
吸附
电化学
传质
化学
金属
碳纤维
扩散
法拉第效率
无机化学
可逆氢电极
化学工程
电极
材料科学
工作电极
物理化学
有机化学
复合数
复合材料
物理
色谱法
工程类
热力学
作者
Jinying Meng,Chuanqi Cheng,Yuting Wang,Yifu Yu,Bin Zhang
摘要
The electrochemical NO reduction reaction (NORR) is a promising approach for both nitrogen cycle regulation and ammonia synthesis. Due to the relatively low concentration of the NO source and poor solubility of NO in solution, mass transfer limitation is a serious but easily overlooked issue. In this work, porous carbon-supported ultrafine Cu clusters grown on Cu nanowire arrays (defined as Cu@Cu/C NWAs) are prepared for low-concentration NORR. A high Faradaic efficiency (93.0%) and yield rate (1180.5 μg h–1 cm–2) of ammonia are realized on Cu@Cu/C NWAs at −0.1 V vs a reversible hydrogen electrode (RHE), which are far superior to those of Cu NWAs and other reported performances under similar conditions. The construction of a porous carbon support can effectively decrease the NO diffusion kinetics and promote NO coverage for subsequent highly effective conversion. Moreover, the favorable metal–support interaction between ultrafine Cu clusters and carbon support enhances the adsorption of NO and decreases the barrier for *HNO formation in comparison with that of pure Cu NWAs. Overall, the whole NORR can be fully strengthened on Cu@Cu/C NWAs at low NO concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI