An effective CNN and Transformer complementary network for medical image segmentation

计算机科学 卷积神经网络 分割 变压器 人工智能 编码器 图像分割 模式识别(心理学) 计算机视觉 工程类 电压 操作系统 电气工程
作者
Feiniu Yuan,Zhengxiao Zhang,Zhijun Fang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:136: 109228-109228 被引量:264
标识
DOI:10.1016/j.patcog.2022.109228
摘要

The Transformer network was originally proposed for natural language processing. Due to its powerful representation ability for long-range dependency, it has been extended for vision tasks in recent years. To fully utilize the advantages of Transformers and Convolutional Neural Networks (CNNs), we propose a CNN and Transformer Complementary Network (CTCNet) for medical image segmentation. We first design two encoders by Swin Transformers and Residual CNNs to produce complementary features in Transformer and CNN domains, respectively. Then we cross-wisely concatenate these complementary features to propose a Cross-domain Fusion Block (CFB) for effectively blending them. In addition, we compute the correlation between features from the CNN and Transformer domains, and apply channel attention to the self-attention features by Transformers for capturing dual attention information. We incorporate cross-domain fusion, feature correlation and dual attention together to propose a Feature Complementary Module (FCM) for improving the representation ability of features. Finally, we design a Swin Transformer decoder to further improve the representation ability of long-range dependencies, and propose to use skip connections between the Transformer decoded features and the complementary features for extracting spatial details, contextual semantics and long-range information. Skip connections are performed in different levels for enhancing multi-scale invariance. Experimental results show that our CTCNet significantly surpasses the state-of-the-art image segmentation models based on CNNs, Transformers, and even Transformer and CNN combined models designed for medical image segmentation. It achieves superior performance on different medical applications, including multi-organ segmentation and cardiac segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
and999完成签到,获得积分10
1秒前
搜集达人应助浅斟低唱采纳,获得10
2秒前
3秒前
yurunxintian完成签到,获得积分10
4秒前
5秒前
小子发布了新的文献求助30
5秒前
跳跃的冷卉完成签到 ,获得积分10
5秒前
引子给认真的弼的求助进行了留言
8秒前
科研小民工应助betty2009采纳,获得30
8秒前
p13508397190发布了新的文献求助10
9秒前
YP_024完成签到,获得积分10
9秒前
11秒前
结实擎苍发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
甜甜太阳发布了新的文献求助10
15秒前
chuhaomin发布了新的文献求助30
15秒前
陌上花开发布了新的文献求助10
17秒前
老姚完成签到,获得积分10
18秒前
18秒前
无限秋天发布了新的文献求助10
19秒前
luo完成签到,获得积分10
21秒前
21秒前
bala完成签到 ,获得积分10
21秒前
明朗完成签到 ,获得积分10
22秒前
幽默亦旋完成签到 ,获得积分10
22秒前
1+1应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
爱静静应助jiang采纳,获得10
23秒前
zhangyidian应助科研通管家采纳,获得10
23秒前
lijianguo应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
大模型应助结实擎苍采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093