亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An effective CNN and Transformer complementary network for medical image segmentation

计算机科学 卷积神经网络 分割 变压器 人工智能 编码器 图像分割 模式识别(心理学) 计算机视觉 工程类 电压 操作系统 电气工程
作者
Feiniu Yuan,Zhengxiao Zhang,Zhijun Fang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:136: 109228-109228 被引量:211
标识
DOI:10.1016/j.patcog.2022.109228
摘要

The Transformer network was originally proposed for natural language processing. Due to its powerful representation ability for long-range dependency, it has been extended for vision tasks in recent years. To fully utilize the advantages of Transformers and Convolutional Neural Networks (CNNs), we propose a CNN and Transformer Complementary Network (CTCNet) for medical image segmentation. We first design two encoders by Swin Transformers and Residual CNNs to produce complementary features in Transformer and CNN domains, respectively. Then we cross-wisely concatenate these complementary features to propose a Cross-domain Fusion Block (CFB) for effectively blending them. In addition, we compute the correlation between features from the CNN and Transformer domains, and apply channel attention to the self-attention features by Transformers for capturing dual attention information. We incorporate cross-domain fusion, feature correlation and dual attention together to propose a Feature Complementary Module (FCM) for improving the representation ability of features. Finally, we design a Swin Transformer decoder to further improve the representation ability of long-range dependencies, and propose to use skip connections between the Transformer decoded features and the complementary features for extracting spatial details, contextual semantics and long-range information. Skip connections are performed in different levels for enhancing multi-scale invariance. Experimental results show that our CTCNet significantly surpasses the state-of-the-art image segmentation models based on CNNs, Transformers, and even Transformer and CNN combined models designed for medical image segmentation. It achieves superior performance on different medical applications, including multi-organ segmentation and cardiac segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
1秒前
3秒前
早睡早起完成签到 ,获得积分10
21秒前
李贝宁完成签到 ,获得积分10
24秒前
科目三应助ghx采纳,获得10
32秒前
阿尼亚发布了新的文献求助10
48秒前
风止完成签到 ,获得积分10
1分钟前
1分钟前
阳阳阳完成签到 ,获得积分10
1分钟前
1分钟前
春衫发布了新的文献求助10
1分钟前
郭志晟完成签到 ,获得积分10
1分钟前
春衫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
飘逸慕灵发布了新的文献求助30
1分钟前
1分钟前
朴实如波发布了新的文献求助10
1分钟前
1分钟前
千倾完成签到 ,获得积分10
1分钟前
1分钟前
英姑应助zhangxr采纳,获得10
1分钟前
飘逸慕灵完成签到,获得积分10
1分钟前
zhangxr发布了新的文献求助10
1分钟前
给我辣条丶完成签到,获得积分10
1分钟前
Jasper应助科研通管家采纳,获得20
2分钟前
我是老大应助霸气的思柔采纳,获得10
2分钟前
2分钟前
西葫芦莲子粥完成签到,获得积分10
2分钟前
2分钟前
zhangxr发布了新的文献求助10
2分钟前
浮云完成签到,获得积分10
3分钟前
铁臂阿童木完成签到,获得积分10
3分钟前
3分钟前
wanci应助zhangxr采纳,获得10
3分钟前
3分钟前
ssy完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139515
求助须知:如何正确求助?哪些是违规求助? 2790418
关于积分的说明 7795156
捐赠科研通 2446832
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146