Artificial intelligence driven hydrogen and battery technologies – A review

电池(电) 计算机科学 可再生能源 能源管理 人工智能 能量载体 系统工程 能量(信号处理) 工程类 电气工程 功率(物理) 数学 量子力学 统计 物理
作者
A. Ramesh,S. Vigneshwar,Sundaram Vickram,S. Manikandan,R. Subbaiya,Natchimuthu Karmegam,Woong Kim
出处
期刊:Fuel [Elsevier]
卷期号:337: 126862-126862 被引量:51
标识
DOI:10.1016/j.fuel.2022.126862
摘要

The world has recognized the importance of renewable energy and is moving towards a rapid transition to renewable energy and energy efficiency. Advances in electrolysis and cost reductions, as well as the availability of renewable energy sources, have paved the way for the creation of green hydrogen, a completely carbon-free fuel, making it a real contender to revolutionize the energy market. The recent incorporation of artificial intelligence into the energy sector has provided a major breakthrough for the industry. Artificial intelligence algorithms and models such as artificial neural networks, machine learning, support vector regression, and fuzzy logic models can greatly contribute to improving hydrogen energy production, storage, and transportation. They play an important role in predicting various parameters, safety protocols and management of hydrogen production. Furthermore, advances in artificial intelligence are expected to bring huge state-of-the-art technologies and tools for hydrogen and battery technology that could help solve the current energy-oriented crises and problems. This review provides insight into the feasibility of state-of-the-art artificial intelligence for hydrogen and battery technology. The primary focus is to demonstrate the contribution of various AI techniques, its algorithms and models in hydrogen energy industry, as well as smart battery manufacturing, and optimization. Meanwhile, AI models integrated into battery technology play a key role in material discovery, battery design, improved battery manufacturing, diagnostic tools, and optimal battery management systems for smart batteries. With improved performance and longer life, these smart batteries will be integrated into modern robotics, electric vehicles, aerospace and other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qwer完成签到,获得积分20
刚刚
刚刚
cj完成签到 ,获得积分10
刚刚
研友_Z11kkZ发布了新的文献求助10
刚刚
1秒前
碧蓝青寒完成签到 ,获得积分20
1秒前
dff发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
huangyao发布了新的文献求助10
4秒前
4秒前
4秒前
葫芦家二娃完成签到,获得积分10
5秒前
xxxxx炒菜发布了新的文献求助10
5秒前
6秒前
愉快问枫应助科研r采纳,获得10
7秒前
7秒前
nini完成签到,获得积分10
8秒前
CC发布了新的文献求助10
9秒前
空禅yew完成签到,获得积分10
9秒前
xx发布了新的文献求助10
9秒前
17完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
Ava应助黄桃味采纳,获得10
10秒前
传奇3应助xxxxx炒菜采纳,获得10
10秒前
翻滚的肉夹馍完成签到,获得积分10
12秒前
12秒前
小木头人完成签到,获得积分10
12秒前
一梦千年发布了新的文献求助10
13秒前
13秒前
cao_bq完成签到,获得积分20
13秒前
王子琛发布了新的文献求助30
13秒前
芒果彩虹猪完成签到,获得积分10
14秒前
晓薇发布了新的文献求助10
14秒前
烟花应助涵寒晗菡采纳,获得10
14秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263161
求助须知:如何正确求助?哪些是违规求助? 2903779
关于积分的说明 8327124
捐赠科研通 2573786
什么是DOI,文献DOI怎么找? 1398541
科研通“疑难数据库(出版商)”最低求助积分说明 654235
邀请新用户注册赠送积分活动 632778