Deep Learning and Embedding Based Latent Factor Model for Collaborative Recommender Systems

电影 推荐系统 计算机科学 协同过滤 深度学习 因子(编程语言) 人工智能 机器学习 特征学习 嵌入 因子分析 特征(语言学) 深信不疑网络 领域(数学) 学习迁移 数学 语言学 哲学 纯数学 程序设计语言
作者
Abebe Tamrat Tegene,Qiao Liu,Yanglei Gan,Tingting Dai,Habte Lejebo Leka,Melak Ayenew
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (2): 726-726 被引量:21
标识
DOI:10.3390/app13020726
摘要

A collaborative recommender system based on a latent factor model has achieved significant success in the field of personalized recommender systems. However, the latent factor model suffers from sparsity problems. It is also limited in its ability to extract non-linear data features, resulting in poor recommendation performance. Inspired by the success of deep learning in different application areas, we incorporate deep learning into our proposed method to overcome the above problems. In this paper, we propose a dual deep learning and embedding-based latent factor model that considers dense user and item feature vectors. The model combines the existing deep learning and latent factor models to extract deep abstractions and non-linear feature representations of the data for rating prediction. The core idea is to map the dense user and item vectors generated by embedding techniques into dual, fully connected deep neural network architectures. In these two separate architectures, it learns the non-linear representation of the input data. The method then predicts the rating score by integrating the factors obtained from the two independent structures using the inner product. From the experimental result, we observe that the proposed model outperformed state-of-the-art existing models in real-world datasets (MovieLens ML-100K and ML-1M).

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十七应助睡袋采纳,获得10
3秒前
General发布了新的文献求助30
4秒前
xu发布了新的文献求助30
5秒前
5秒前
6秒前
bai发布了新的文献求助10
6秒前
大个应助土豆采纳,获得10
9秒前
暴躁的安柏完成签到,获得积分20
9秒前
Damy完成签到,获得积分10
9秒前
10秒前
弘一发布了新的文献求助10
10秒前
咩咩羊发布了新的文献求助10
11秒前
傲娇文博发布了新的文献求助10
12秒前
GXC0304完成签到,获得积分10
14秒前
孟夏完成签到,获得积分10
15秒前
15秒前
郭海涛完成签到,获得积分10
15秒前
15秒前
16秒前
所所应助科研通管家采纳,获得10
16秒前
16秒前
渔舟唱晚应助科研通管家采纳,获得10
16秒前
en发布了新的文献求助10
16秒前
热心幻然完成签到,获得积分10
17秒前
MUSTer一一完成签到 ,获得积分10
17秒前
浮沉发布了新的文献求助10
19秒前
Akim应助nickthename采纳,获得10
19秒前
20秒前
wanci应助流星雨采纳,获得10
20秒前
21秒前
sq发布了新的文献求助10
22秒前
23秒前
24秒前
李健应助格格巫采纳,获得10
24秒前
24秒前
24秒前
杳鸢应助顺66采纳,获得10
25秒前
bocky完成签到 ,获得积分10
26秒前
yinshaoyu21发布了新的文献求助10
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397187
求助须知:如何正确求助?哪些是违规求助? 3006382
关于积分的说明 8821224
捐赠科研通 2693589
什么是DOI,文献DOI怎么找? 1475409
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675719