Giovanni Morone,Fioravante Capone,Marco Iosa,Alessandro Cruciani,Matteo Paolucci,Alex Martino Cinnera,Gabriella Musumeci,Nicoletta Brunelli,Carmelina Maria Costa,Stefano Paolucci,Vincenzo Di Lazzaro
To assess whether dual transcranial direct current stimulation (tDCS) may enhance the efficacy of exoskeleton robotic training on upper limb motor functions in patients with chronic stroke.A prospective, bi-center, double-blind, randomized clinical trial study was performed. Patients with moderate-to-severe stroke (according to The National Institute of Health Stroke Scale) were randomly assigned to receive dual or sham tDCS immediately before robotic therapy (10 sessions, 2 weeks). The primary outcome was the Fugl-Meyer for Upper Extremity, assessed before, after, and at the 12-week follow-up. Neurophysiological evaluation of corticospinal projections to upper limb muscles was performed by recording motor evoked potentials (MEPs). ClinicalTrials.gov-NCT03026712.Two hundred and sixty individuals were tested for eligibility, of which 80 were enrolled and agreed to participate. Excluding 14 dropouts, 66 patients were randomly assigned into the 2 groups. Results showed that chronic patients were stable before treatment and significantly improved after that. The records within subject improvements were not significantly different between the 2 groups. However, a post-hoc analysis subdividing patients in 2 subgroups based on the presence or absence of MEPs at the baseline showed a significantly higher effect of real tDCS in patients without MEPs when compared to patients with MEPs (F = 4.6, P = .007).The adjunction of dual tDCS to robotic arm training did not further enhance recovery in the treated sample of patients with chronic stroke. However, a significant improvement in the subgroup of patients with a severe corticospinal dysfunction (as suggested by the absence of MEPs) suggests that they could benefit from such a treatment combination.