亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal siting of rainwater harvesting systems for reducing combined sewer overflows at city scale

雨水收集 雨水管理模型 雨水 合流下水道 低影响开发 风暴 帕累托原理 环境科学 杠杆(统计) 多目标优化 计算机科学 水文学(农业) 地表径流 雨水管理 工程类 气象学 物理 岩土工程 生态学 机器学习 生物 运营管理
作者
Seyed Hamed Ghodsi,Zhenduo Zhu,L. Shawn Matott,Alan J. Rabideau,María Nariné Torres
出处
期刊:Water Research [Elsevier]
卷期号:230: 119533-119533 被引量:23
标识
DOI:10.1016/j.watres.2022.119533
摘要

The installation of green infrastructure (GI) is an effective approach to manage urban stormwater and combined sewer overflow (CSO) by restoring pre-development conditions in urban areas. Research on simulation-optimization techniques to aid with GI planning decision-making is expanding. However, due to high computational expense, the simulation-optimization methods are often based on design storm events, and it is unclear how much different rainfall scenarios (i.e., design storm events vs. long-term historical rainfall data) impact the optimal siting of GI. The Parallel Pareto Archived Dynamically Dimensioned Search (ParaPADDS) algorithm in a novel simulation-optimization tool OSTRICH-SWMM was used to leverage distributed computing resources. A case study was conducted to optimally site rainwater harvesting cisterns within 897 potential subcatchments throughout the City of Buffalo, New York. Seven design storm events with different return periods and rainfall durations and a one-month historical rainfall time series were considered. The results showed that the optimal solutions of siting cisterns using event-based scenarios, though less computationally expensive, may not perform well under continuous rainfall scenarios, suggesting design rainfall scenarios should be carefully considered for optimizing GI planning. The impact of rainfall scenarios was particularly significant in the middle region of the Pareto front of multi-objective optimization. Utilizing high-performance parallel computing, OSTRICH-SWMM is a promising tool to optimize GI at large spatial and temporal scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
danruolan发布了新的文献求助10
8秒前
18秒前
23秒前
24秒前
29秒前
科研通AI6.1应助啵子采纳,获得10
29秒前
121发布了新的文献求助10
30秒前
熊仔一百完成签到,获得积分0
30秒前
30秒前
31秒前
L坨坨完成签到,获得积分10
32秒前
35秒前
Tang发布了新的文献求助30
36秒前
38秒前
41秒前
43秒前
44秒前
wcx完成签到,获得积分10
44秒前
48秒前
50秒前
danruolan完成签到,获得积分10
50秒前
星辰大海应助科研通管家采纳,获得10
51秒前
赘婿应助科研通管家采纳,获得10
51秒前
充电宝应助科研通管家采纳,获得10
51秒前
56秒前
寻道图强应助周周采纳,获得50
1分钟前
黄果兰完成签到,获得积分10
1分钟前
1分钟前
Zzzzzzz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
hhh发布了新的文献求助10
1分钟前
Miracle完成签到,获得积分10
1分钟前
Czl完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
hhh完成签到,获得积分10
1分钟前
热情的觅云完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780002
求助须知:如何正确求助?哪些是违规求助? 5651336
关于积分的说明 15452646
捐赠科研通 4910879
什么是DOI,文献DOI怎么找? 2643086
邀请新用户注册赠送积分活动 1590697
关于科研通互助平台的介绍 1545154