A Multistage Algorithm for Solving Multiobjective Optimization Problems With Multiconstraints

数学优化 趋同(经济学) 多目标优化 计算机科学 约束(计算机辅助设计) 最优化问题 帕累托原理 可行区 算法 数学 几何学 经济增长 经济
作者
Ruiqing Sun,Juan Zou,Yuan Liu,Shengxiang Yang,Jinhua Zheng
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1207-1219 被引量:24
标识
DOI:10.1109/tevc.2022.3224600
摘要

There are usually multiple constraints in constrained multiobjective optimization. Those constraints reduce the feasible area of the constrained multiobjective optimization problems (CMOPs) and make it difficult for current multiobjective optimization algorithms (CMOEAs) to obtain satisfactory feasible solutions. In order to solve this problem, this article studies the relationship between constraints, then obtains the priority between constraints according to the relationship between the pareto front (PF) of the single constraint and their common PF. Meanwhile, this article proposes a multistage CMOEA and applies this priority, which can save computing resources while helping the algorithm converge. The proposed algorithm completely abandons the feasibility in the early stage to better explore the objective space, and obtains the priority of constraints according to the relationship. Then, the algorithm evaluates a single constraint in the medium stage to further explore the objective space according to this priority, and abandons the evaluation of some less important constraints according to the relationship to save the evaluation times. At the end stage of the algorithm, the feasibility will be fully considered to improve the quality of the solutions obtained in the first two stages, and finally get the solutions with good convergence, feasibility, and diversity. The results on five CMOP suites and three real-world CMOPs show that the algorithm proposed in this article can have strong competitiveness in existing constrained multiobjective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小心闪光弹完成签到,获得积分10
2秒前
2秒前
完美世界应助YY采纳,获得10
2秒前
an发布了新的文献求助10
3秒前
louis发布了新的文献求助10
4秒前
insissst发布了新的文献求助10
6秒前
7秒前
斯文败类应助大布采纳,获得20
8秒前
夏傥完成签到,获得积分10
11秒前
孤虹哲凝完成签到,获得积分10
11秒前
12秒前
志轩完成签到,获得积分10
13秒前
14秒前
张宝发布了新的文献求助10
15秒前
慕青应助孤岛飞鹰采纳,获得10
17秒前
17秒前
18秒前
19秒前
YY发布了新的文献求助10
21秒前
汉堡包应助大林采纳,获得10
21秒前
21秒前
大模型应助yyh采纳,获得10
22秒前
peng发布了新的文献求助30
23秒前
24秒前
25秒前
NexusExplorer应助北夏采纳,获得10
25秒前
klicking完成签到,获得积分10
26秒前
必胜客看得开完成签到,获得积分10
26秒前
wu发布了新的文献求助10
29秒前
大糖糕僧发布了新的文献求助10
30秒前
31秒前
打打应助胡子采纳,获得10
32秒前
34秒前
34秒前
乐山乐水发布了新的文献求助20
34秒前
yyh完成签到,获得积分20
36秒前
cyf完成签到 ,获得积分10
36秒前
情怀应助张点心采纳,获得10
36秒前
载酒醉发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112