亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification

过度拟合 计算机科学 判别式 人工智能 强化学习 特征(语言学) 特征提取 模式识别(心理学) 机器学习 过程(计算) 特征选择 人工神经网络 语言学 操作系统 哲学
作者
Zhonghang Zhu,Lequan Yu,Wei Wu,Rongshan Yu,Defu Zhang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1337-1348 被引量:37
标识
DOI:10.1109/tmi.2022.3227066
摘要

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝猫完成签到 ,获得积分10
刚刚
Zert发布了新的文献求助10
2秒前
12秒前
新xin完成签到,获得积分10
18秒前
28秒前
33秒前
传奇3应助科研通管家采纳,获得20
33秒前
42秒前
爱做实验的泡利完成签到,获得积分10
44秒前
44秒前
mengzhe完成签到,获得积分10
1分钟前
2分钟前
Jean发布了新的文献求助10
2分钟前
美美发布了新的文献求助10
2分钟前
2分钟前
蔡浩天发布了新的文献求助10
2分钟前
小马甲应助Fishchips采纳,获得10
2分钟前
希望天下0贩的0应助Zert采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Fishchips发布了新的文献求助10
2分钟前
2分钟前
Zert发布了新的文献求助10
2分钟前
Jasper应助蔡浩天采纳,获得10
2分钟前
2分钟前
无花果应助Zert采纳,获得10
4分钟前
4分钟前
Takahara2000应助科研通管家采纳,获得10
4分钟前
Zert发布了新的文献求助10
4分钟前
4分钟前
麻花阳完成签到,获得积分10
5分钟前
蓝华完成签到 ,获得积分10
5分钟前
上官若男应助Fishchips采纳,获得10
5分钟前
N_关注了科研通微信公众号
5分钟前
5分钟前
Fishchips发布了新的文献求助10
5分钟前
N_发布了新的文献求助30
5分钟前
5分钟前
Marciu33完成签到,获得积分10
6分钟前
dllneu发布了新的文献求助10
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346420
求助须知:如何正确求助?哪些是违规求助? 4481037
关于积分的说明 13947151
捐赠科研通 4378821
什么是DOI,文献DOI怎么找? 2406067
邀请新用户注册赠送积分活动 1398653
关于科研通互助平台的介绍 1371340