MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification

过度拟合 计算机科学 判别式 人工智能 强化学习 特征(语言学) 特征提取 模式识别(心理学) 机器学习 过程(计算) 特征选择 人工神经网络 语言学 操作系统 哲学
作者
Zhonghang Zhu,Lequan Yu,Wei Wu,Rongshan Yu,Defu Zhang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1337-1348 被引量:19
标识
DOI:10.1109/tmi.2022.3227066
摘要

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
手打鱼丸完成签到 ,获得积分10
1秒前
体贴凌柏发布了新的文献求助10
1秒前
开心快乐发大财完成签到,获得积分10
3秒前
萌萌哒完成签到,获得积分10
3秒前
小龅牙吖完成签到,获得积分10
3秒前
Propitious完成签到,获得积分10
4秒前
徐先生1106完成签到,获得积分10
4秒前
Epiphany完成签到,获得积分10
5秒前
舒心的久完成签到 ,获得积分10
5秒前
闻巷雨完成签到 ,获得积分10
7秒前
北风完成签到,获得积分10
8秒前
xliiii完成签到,获得积分10
8秒前
时光倒流的鱼完成签到,获得积分10
9秒前
LL完成签到,获得积分10
9秒前
李李完成签到,获得积分20
9秒前
雨无意完成签到,获得积分10
10秒前
盛宇大天才完成签到,获得积分10
12秒前
游戏人间完成签到 ,获得积分10
13秒前
14秒前
科研通AI5应助淡淡的忆彤采纳,获得10
14秒前
早日毕业完成签到,获得积分10
14秒前
Billie完成签到,获得积分10
15秒前
积极行天完成签到,获得积分10
15秒前
98完成签到,获得积分10
16秒前
nkmenghan完成签到,获得积分20
17秒前
韶邑完成签到,获得积分10
17秒前
penzer完成签到 ,获得积分10
18秒前
suwan完成签到,获得积分10
19秒前
张瀚文完成签到 ,获得积分10
22秒前
不吃香菜完成签到 ,获得积分10
24秒前
何日完成签到,获得积分10
26秒前
明天完成签到,获得积分10
26秒前
rrrick完成签到,获得积分10
26秒前
XF发布了新的文献求助10
27秒前
结实乐曲完成签到,获得积分10
27秒前
27秒前
28秒前
顺利紫山完成签到,获得积分10
29秒前
liaodongjun完成签到,获得积分10
30秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029