MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification

过度拟合 计算机科学 判别式 人工智能 强化学习 特征(语言学) 特征提取 模式识别(心理学) 机器学习 过程(计算) 特征选择 人工神经网络 语言学 操作系统 哲学
作者
Zhonghang Zhu,Lequan Yu,Wei Wu,Rongshan Yu,Defu Zhang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1337-1348 被引量:37
标识
DOI:10.1109/tmi.2022.3227066
摘要

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
极意发布了新的文献求助10
1秒前
lk发布了新的文献求助10
1秒前
1秒前
xtz发布了新的文献求助30
3秒前
慕青应助白华苍松采纳,获得10
3秒前
大模型应助kong采纳,获得10
3秒前
当下最好发布了新的文献求助10
3秒前
斯文败类应助HSDSD采纳,获得10
4秒前
慕青应助爱学习的小张采纳,获得10
4秒前
情怀应助高xy采纳,获得10
4秒前
5秒前
画凌烟完成签到,获得积分20
5秒前
丘比特应助吕凯迪采纳,获得10
6秒前
FFGC发布了新的文献求助10
6秒前
慕青应助蘇尼Ai采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
zhou完成签到,获得积分10
9秒前
9秒前
huohua完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
乔治完成签到 ,获得积分10
10秒前
不想看文献完成签到,获得积分10
10秒前
10秒前
枫叶冰域完成签到,获得积分10
12秒前
12秒前
雪白丸子完成签到,获得积分10
12秒前
li关注了科研通微信公众号
12秒前
恰你完成签到,获得积分10
12秒前
四夕完成签到 ,获得积分10
13秒前
13秒前
yaoyinlin发布了新的文献求助10
13秒前
JLHN发布了新的文献求助10
13秒前
13秒前
慕青应助chens627采纳,获得10
15秒前
枫叶冰域发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027