MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification

过度拟合 计算机科学 判别式 人工智能 强化学习 特征(语言学) 特征提取 模式识别(心理学) 机器学习 过程(计算) 特征选择 人工神经网络 语言学 操作系统 哲学
作者
Zhonghang Zhu,Lequan Yu,Wei Wu,Rongshan Yu,Defu Zhang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1337-1348 被引量:19
标识
DOI:10.1109/tmi.2022.3227066
摘要

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starwan发布了新的文献求助10
1秒前
邢文瑞发布了新的文献求助10
1秒前
苏苏发布了新的文献求助10
1秒前
ED应助潜竹采纳,获得10
1秒前
英俊的铭应助卡列林采纳,获得10
2秒前
安东尼奥完成签到 ,获得积分10
2秒前
星辰大海应助呆萌的正豪采纳,获得10
4秒前
汉堡包应助结实星星采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
Rondab应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Rondab应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小马甲应助纪无施采纳,获得10
7秒前
RuiXueLi完成签到,获得积分0
8秒前
10秒前
11秒前
11秒前
13秒前
14秒前
科研通AI2S应助HSA采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976107
求助须知:如何正确求助?哪些是违规求助? 3520330
关于积分的说明 11202435
捐赠科研通 3256819
什么是DOI,文献DOI怎么找? 1798504
邀请新用户注册赠送积分活动 877642
科研通“疑难数据库(出版商)”最低求助积分说明 806496