Applications of machine learning techniques for enhancing nondestructive food quality and safety detection

机器学习 人工智能 无损检测 计算机科学 质量(理念) 电子鼻 多样性(控制论) 特征(语言学) 医学 哲学 语言学 认识论 放射科
作者
Yuandong Lin,Ji Ma,Qijun Wang,Da‐Wen Sun
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:63 (12): 1649-1669 被引量:59
标识
DOI:10.1080/10408398.2022.2131725
摘要

In considering the need of people all over the world for high-quality food, there has been a recent increase in interest in the role of nondestructive and rapid detection technologies in the food industry. Moreover, the analysis of data acquired by most nondestructive technologies is complex, time-consuming, and requires highly skilled operators. Meanwhile, the general applicability of various chemometric or statistical methods is affected by noise, sample, variability, and data complexity that vary under various testing conditions. Nowadays, machine learning (ML) techniques have a wide range of applications in the food industry, especially in nondestructive technology and equipment intelligence, due to their powerful ability in handling irrelevant information, extracting feature variables, and building calibration models. The review provides an introduction and comparison of machine learning techniques, and summarizes these algorithms as traditional machine learning (TML), and deep learning (DL). Moreover, several novel nondestructive technologies, namely acoustic analysis, machine vision (MV), electronic nose (E-nose), and spectral imaging, combined with different advanced ML techniques and their applications in food quality assessment such as variety identification and classification, safety inspection and processing control, are presented. In addition to this, the existing challenges and prospects are discussed. The result of this review indicates that nondestructive testing technologies combined with state-of-the-art machine learning techniques show great potential for monitoring the quality and safety of food products and different machine learning algorithms have their characteristics and applicability scenarios. Due to the nature of feature learning, DL is one of the most promising and powerful techniques for real-time applications, which needs further research for full and wide applications in the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xue完成签到,获得积分20
2秒前
2秒前
臧佳莹发布了新的文献求助20
5秒前
5秒前
SPQR完成签到,获得积分10
7秒前
7秒前
魔幻熊猫发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
8秒前
Lin_Yongqi完成签到 ,获得积分10
9秒前
wisdom完成签到,获得积分10
12秒前
Akim应助无情干饭崽采纳,获得10
12秒前
hyyy完成签到 ,获得积分10
13秒前
zzz完成签到,获得积分10
13秒前
asdfj完成签到,获得积分10
13秒前
九耳久知发布了新的文献求助10
13秒前
传奇3应助irisjlj采纳,获得10
15秒前
Philthee完成签到,获得积分10
16秒前
16秒前
隐形曼青应助臧佳莹采纳,获得10
18秒前
科研通AI2S应助lvzhigang采纳,获得10
19秒前
周周完成签到,获得积分10
21秒前
21秒前
毛豆爸爸应助火星上问柳采纳,获得20
22秒前
fan发布了新的文献求助10
22秒前
852应助ty采纳,获得10
24秒前
嘎嘎嘎完成签到 ,获得积分10
25秒前
25秒前
26秒前
26秒前
周周发布了新的文献求助10
26秒前
我是老大应助Nowind采纳,获得10
26秒前
binz完成签到,获得积分10
27秒前
DONGDONG完成签到,获得积分20
27秒前
29秒前
29秒前
丘比特应助坨坨西州采纳,获得10
30秒前
欢呼的水香关注了科研通微信公众号
31秒前
CodeCraft应助嗑瓜子传奇采纳,获得10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244