亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

30 days mortality prediction and risk factor analysis of Asian patients with ACS using interpretable machine learning algorithm

医学 急性冠脉综合征 蒂米 队列 弗雷明翰风险评分 溶栓 心肌梗塞 机器学习 内科学 算法 人工智能 疾病 计算机科学
作者
S Kasim,Sri Nurestri Abd Malek,Khairul Shafiq Ibrahim,Boon-Khaw Lim,Muhammad Firdaus Aziz
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehac544.2783
摘要

Abstract Background Thrombolysis in Myocardial Infarction (TIMI) is used to predict the mortality rate in patients with acute coronary syndrome (ACS). TIMI was developed with limited data on the Asian cohort and was based on the Western cohort. STEMI and NSTEMI have separate TIMI scores. There has been limited research on Asian ACS patients using interpretable machine learning (ML) algorithms. Purpose To construct a single 30-day mortality risk scoring system, as well as identify and analyse risk factors in ASIAN patients with ACS, that is applicable to both STEMI and NSTEMI patients, using an interpretable ML algorithm. Methods The National Cardiovascular Disease Database registry data of 9054 patients was used. 70% of the data was used for algorithm development, with the remaining 30% used for validation Fifty-four parameters were considered, demographics, cardiovascular risk, medications, and clinical variables. To provide better guidance and advice for clinical judgement, the gradient boosting algorithm (XGBoost) for classification analysis and SHapley Additive exPlanation (SHAP) value analysis graphs were used. Each indicator's SHAP value indicates the impact on model output (mortality) and was calculated using the XGBoost model. The performance evaluation metric was the area under the curve (AUC). The model was validated with a validation dataset and compared to the conventional score TIMI for STEMI and NSTEMI. Results The performance on validation dataset of the XGBoost algorithm using the top ten predictors from SHAP for; STEMI (AUC = 0.8534, 95% CI: 0.8226–0.8842, Accuracy: 0.8053, Sensitivity: 0.73125, Specificity: 0.81355) and NSTEMI (AUC = 0.8145, 95% CI: 0.77–0.8589, Accuracy: 0.7972, Sensitivity: 0.64356, Specificity: 0.81232) outperformed TIMI score (STEMI AUC = 0.785, NSTEMI AUC = 0.543). Killip class, age, heart rate, fasting blood glucose, ACEI, creatine kinase, systolic blood pressure, HDLC, cardiac catheterization, and oralhypogly are the top ten predictors chosen by the SHAP feature selection in ascending order. Cardiac catheterization and pharmacotherapy drugs as selected predictors improve mortality prediction in STEMI and NSTEMI patients compared to TIMI. The variable names are displayed on the y-axis in ascending order of importance. The average SHAP value is shown next to them. The SHAP value is shown on the x-axis. The colour represents the value of the feature, ranging from small to large, allowing comprehension of the distribution of the SHAP values for each feature (Figure 1). We can see that having a high killip class and being older are linked to a lower survival rate in ACS patients. Cardiac catheterization procedures, as well as the use of ACEI and OHA, both improve patient mortality (Figure 2). Conclusions A single algorithm would classify ACS patients better than TIMI, which requires two distinct scores. In order to better predict 30-day mortality in an ASIAN population, interpretable ML can be used. Funding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Technology Development Fund 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
19秒前
Steam完成签到,获得积分10
20秒前
lee发布了新的文献求助10
21秒前
情怀应助秋雨采纳,获得10
24秒前
38秒前
科研通AI5应助Silver采纳,获得10
39秒前
秋雨发布了新的文献求助10
41秒前
星辰大海应助失眠的筝采纳,获得10
42秒前
45秒前
NexusExplorer应助meikoo采纳,获得10
46秒前
47秒前
Silver发布了新的文献求助10
50秒前
爱静静应助白华苍松采纳,获得10
51秒前
吕绪特完成签到 ,获得积分10
51秒前
Silver完成签到,获得积分10
57秒前
Omni完成签到,获得积分10
1分钟前
1分钟前
失眠的筝发布了新的文献求助10
1分钟前
DreamMaker完成签到,获得积分10
1分钟前
Vegeta完成签到 ,获得积分10
1分钟前
识趣完成签到,获得积分10
1分钟前
木子水告完成签到,获得积分10
1分钟前
1分钟前
1分钟前
HR112应助VELPRO采纳,获得10
1分钟前
1分钟前
李健应助爆爆采纳,获得10
1分钟前
meikoo发布了新的文献求助10
1分钟前
1分钟前
一一发布了新的文献求助10
1分钟前
1分钟前
高贵石头发布了新的文献求助10
1分钟前
1分钟前
失眠的筝完成签到,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
Akim应助热浪午后采纳,获得10
1分钟前
爆爆发布了新的文献求助10
1分钟前
1分钟前
852应助高贵石头采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803