化学
催化作用
纳米颗粒
选择性
X射线光电子能谱
过渡金属
磷化氢
胶体
化学工程
金属
多相催化
透射电子显微镜
光谱学
光化学
无机化学
纳米技术
物理化学
有机化学
材料科学
物理
工程类
量子力学
作者
Xiangru Wei,Grayson Johnson,Yifan Ye,Meiyang Cui,Shen‐Wei Yu,Yihua Ran,Jun Cai,Zhi Liu,Xi Chen,Wenpei Gao,Paul J. L. Bean,Weijie Zhang,Yunpu Zhao,Frédéric A. Perras,Ethan J. Crumlin,Xu Zhang,Robert J. Davis,Zhangxiong Wu,Sen Zhang
摘要
Colloidal chemistry holds promise to prepare uniform and size-controllable pre-catalysts; however, it remains a challenge to unveil the atomic-level transition from pre-catalysts to active catalytic surfaces under the reaction conditions to enable the mechanistic design of catalysts. Here, we report an ambient-pressure X-ray photoelectron spectroscopy study, coupled with in situ environmental transmission electron microscopy, infrared spectroscopy, and theoretical calculations, to elucidate the surface catalytic sites of colloidal Ni nanoparticles for CO2 hydrogenation. We show that Ni nanoparticles with phosphine ligands exhibit a distinct surface evolution compared with amine-capped ones, owing to the diffusion of P under oxidative (air) or reductive (CO2 + H2) gaseous environments at elevated temperatures. The resulting NiPx surface leads to a substantially improved selectivity for CO production, in contrast to the metallic Ni, which favors CH4. The further elimination of surface metallic Ni sites by designing multi-step P incorporation achieves unit selectivity of CO in high-rate CO2 hydrogenation.
科研通智能强力驱动
Strongly Powered by AbleSci AI