柯德兰
图层(电子)
材料科学
极限抗拉强度
色散(光学)
化学工程
复合材料
电导率
化学
有机化学
多糖
光学
物理
工程类
物理化学
作者
Hejun Du,Quan Ji,Yacheng Xing,Xiaomei Ma,Yanzhi Xia
标识
DOI:10.1016/j.carbpol.2023.121035
摘要
To promote the application extension of curdlan from food industry- dominant to advanced flexible biomaterials, a novel group of purely natural curdlan gels with noticeable performance was developed through a simple heating-cooling approach, i.e., heating the dispersion of pristine curdlan in mixed acidic natural deep eutectic solvents (NADESs) and water at 60-90 °C, and cooling at ambient temperature. The NADESs employed are composed of choline chloride and natural organic acids (lactic acid as the representative). The as-developed gels (called eutectohydrogels) are not only compressible and stretchable but conductive, which traditional curdlan hydrogels are not attainable. The compressive stress at 90 % strain exceeds 2.00 ± 0.03 MPa, the tensile strength and fracture elongation reach 0.131 ± 0.002 MPa and 300 ± 9 % respectively, attributed to the distinctive, reciprocally linked self-assembled layer-by-layer network structure formed during gelation. An electric conductivity up to 2.22 ± 0.04 S‧m-1 is achieved. The excellent mechanics and conductivity confer them good strain-sensing behavior. Additionally, the eutectohydrogels display high antibacterial activity against S. aureus (a model Gram-positive bacterium) and E. coli (a model Gram-negative bacterium). The outstanding comprehensive performance together with the purely natural attribute makes them broad application prospects in biomedical fields like flexible bioelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI