Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks

计算机科学 卷积神经网络 人工智能 深度学习 分割 模式识别(心理学) 超参数 编码器 人工神经网络 操作系统
作者
Sercan Yalçın,Hüseyín Vural
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 105941-105941 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.105941
摘要

Accurate diagnosis of brain stroke, classification and segmentation of the stroke are extremely important for physicians to focus on specific points of the brain and apply the right treatment to patients. Encoder-decoder deep learning-based methods have been effectively integrated into many artificial intelligence applications. On the other hand, such networks have many disadvantages due to sampling methods, learning methodologies, and efficient operations. In this study, U-Net, one of the encoder-decoder deep learning-based convolutional neural networks (CNNs), has been developed and proposed for the classification and segmentation of brain stroke. A convolutional deep network architecture is proposed with an optimized dimensional U-Net (D-UNet) by blocking and adaptively sequencing the convolution layers and then optimizing the number of activation functions and hyperparameters. The proposed method examines the computed tomography (CT) images from the dataset used to determine whether there is a brain stroke. It can determine if a stroke is caused by ischemia or hemorrhage once it has occurred. Additionally, the proposed method can precisely reveal the region overlaid by the radiologist and segment the existing stroke. The proposed method is compared with other existing CNN-type architectures by performing various experiments on the same real dataset via Python scripts. The results show that the proposed model performs well, with accuracy rates for stroke classification of 98.9% and ischemia and hemorrhage classification of 98.5%, respectively. Moreover, the segmentation of brain strokes using the proposed model yielded an intersection over union (IoU) rate of 95.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Khr1stINK完成签到,获得积分10
1秒前
xuedong完成签到,获得积分10
1秒前
成就的念双完成签到,获得积分10
2秒前
2秒前
我爱学习完成签到 ,获得积分10
2秒前
甾醇完成签到,获得积分20
2秒前
YHold发布了新的文献求助10
3秒前
Yan完成签到,获得积分10
3秒前
阳佟擎苍完成签到 ,获得积分10
3秒前
SHD完成签到 ,获得积分10
5秒前
5秒前
Enzymisc完成签到,获得积分10
7秒前
orixero应助甾醇采纳,获得10
8秒前
橘仔乐完成签到,获得积分10
8秒前
陈龙发布了新的文献求助10
9秒前
9秒前
安孱完成签到,获得积分10
9秒前
科研通AI2S应助能干的煎饼采纳,获得10
11秒前
11秒前
Aries完成签到 ,获得积分10
11秒前
12秒前
优秀元枫完成签到,获得积分10
12秒前
13秒前
JJJXG完成签到,获得积分10
14秒前
软甜纱雾发布了新的文献求助30
15秒前
qishiyy完成签到,获得积分20
16秒前
17秒前
Chrysan发布了新的文献求助10
18秒前
18秒前
qishiyy发布了新的文献求助10
19秒前
rrfhl完成签到,获得积分10
19秒前
Lin发布了新的文献求助10
21秒前
21秒前
22秒前
xinyue发布了新的文献求助10
22秒前
24秒前
zhangzhang发布了新的文献求助10
24秒前
01231009yrjz完成签到,获得积分10
25秒前
科研通AI2S应助壮观的擎采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239405
求助须知:如何正确求助?哪些是违规求助? 2884745
关于积分的说明 8235100
捐赠科研通 2552925
什么是DOI,文献DOI怎么找? 1381085
科研通“疑难数据库(出版商)”最低求助积分说明 649190
邀请新用户注册赠送积分活动 624863