Federated learning review: Fundamentals, enabling technologies, and future applications

计算机科学 多样性(控制论) 数据科学 个性化 新兴技术 互联网 万维网 人工智能
作者
Syreen Banabilah,Moayad Aloqaily,Eitaa Alsayed,Nida Malik,Yaser Jararweh
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (6): 103061-103061 被引量:207
标识
DOI:10.1016/j.ipm.2022.103061
摘要

Federated Learning (FL) has been foundational in improving the performance of a wide range of applications since it was first introduced by Google. Some of the most prominent and commonly used FL-powered applications are Android’s Gboard for predictive text and Google Assistant. FL can be defined as a setting that makes on-device, collaborative Machine Learning possible. A wide range of literature has studied FL technical considerations, frameworks, and limitations with several works presenting a survey of the prominent literature on FL. However, prior surveys have focused on technical considerations and challenges of FL, and there has been a limitation in more recent work that presents a comprehensive overview of the status and future trends of FL in applications and markets. In this survey, we introduce the basic fundamentals of FL, describing its underlying technologies, architectures, system challenges, and privacy-preserving methods. More importantly, the contribution of this work is in scoping a wide variety of FL current applications and future trends in technology and markets today. We present a classification and clustering of literature progress in FL in application to technologies including Artificial Intelligence, Internet of Things, blockchain, Natural Language Processing, autonomous vehicles, and resource allocation, as well as in application to market use cases in domains of Data Science, healthcare, education, and industry. We discuss future open directions and challenges in FL within recommendation engines, autonomous vehicles, IoT, battery management, privacy, fairness, personalization, and the role of FL for governments and public sectors. By presenting a comprehensive review of the status and prospects of FL, this work serves as a reference point for researchers and practitioners to explore FL applications under a wide range of domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨好圆完成签到,获得积分10
1秒前
邵洋发布了新的文献求助10
1秒前
饱满的凡儿完成签到,获得积分10
2秒前
幽默的南珍完成签到 ,获得积分10
2秒前
iNk应助zz采纳,获得20
2秒前
2秒前
霹雳小土豆-完成签到,获得积分10
3秒前
zhuguli完成签到,获得积分10
3秒前
3秒前
寻道图强应助飞快的子轩采纳,获得30
3秒前
大眼的平松完成签到,获得积分10
3秒前
Lxs159发布了新的文献求助10
3秒前
llz发布了新的文献求助10
4秒前
小燕子完成签到,获得积分10
4秒前
池寒1完成签到 ,获得积分10
5秒前
ZERO完成签到,获得积分10
5秒前
佳思思完成签到,获得积分10
5秒前
霁星河完成签到,获得积分10
5秒前
NJY完成签到,获得积分10
6秒前
7秒前
蓝冰完成签到,获得积分10
7秒前
尊敬的手套完成签到,获得积分10
7秒前
小猫爬楼梯完成签到,获得积分10
8秒前
8秒前
八爪鱼发布了新的文献求助10
9秒前
池寒完成签到 ,获得积分10
9秒前
Yanxb完成签到,获得积分10
9秒前
Qyyy发布了新的文献求助10
10秒前
ys131150完成签到,获得积分10
10秒前
zy123完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
希望天下0贩的0应助opponent采纳,获得10
12秒前
英姑应助poker84采纳,获得10
12秒前
YORLAN完成签到 ,获得积分10
13秒前
hhhh完成签到 ,获得积分10
13秒前
11完成签到,获得积分10
14秒前
teriteri发布了新的文献求助10
14秒前
老Mark完成签到,获得积分10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142981
求助须知:如何正确求助?哪些是违规求助? 2794000
关于积分的说明 7809074
捐赠科研通 2450260
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601374