Discussion on erosion and accumulation behaviours in the process of soil-rock flow migration with deep learning experimental analysis method and numerical simulation

泥石流 腐蚀 沉积作用 流量(数学) 地质学 岩土工程 碎片 内腐蚀 过程(计算) 计算机科学 机械 地貌学 沉积物 物理 海洋学 操作系统
作者
Shih-Hao Chou
出处
期刊:Impact [Science Impact, Ltd.]
卷期号:2022 (2): 9-11
标识
DOI:10.21820/23987073.2022.2.9
摘要

The frequency of debris flows occurring has increased in Taiwan and mitigation strategies are important to protect property and save lives. Dr Shih-Hao Chou is a research scholar based in the Department of Mechanical Engineering, National Central University, Taiwan, is exploring how AI and deep learning can be applied to the mitigation of debris flow. He is investigating the physical mechanisms of debris flow, as well as migration behaviour and the potential scale of future disasters, which includes analysing flow behaviour and comparing it with an occurrence model. In their work, Chou and his collaborators are using a deep learning experimental analysis method to observe the current situation of debris flow in real time, and further predict the downstream debris flow behaviour. The researchers are also utilising numerical simulation in order to observe the internal movement behaviour in the earth-rock flow field and the damage caused to engineering facilities. Chou is conducting this research in collaboration with Professor Hsiau Shusan from the Department of Mechanical Engineering, National Central University. Chou is also looking at erosion transport or sedimentation behaviour in the process of collapse and flow, responding to a knowledge gap in this area. This involves studying the erosion and sedimentation behaviour of an artificial dam-break particle flow field on the bottom bed and, following the dam break, studying the particles in the collapse process using image and particle tracking technology and numerical simulation technology, looking at avalanche speed, avalanche time, erosion and sedimentation phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AMM完成签到,获得积分10
刚刚
李欢发布了新的文献求助10
刚刚
mk完成签到,获得积分10
1秒前
万能图书馆应助嘉禾望岗采纳,获得10
1秒前
1秒前
YJ完成签到,获得积分10
1秒前
1秒前
淡定跳跳糖完成签到 ,获得积分10
2秒前
nihil发布了新的文献求助10
2秒前
小宇发布了新的文献求助10
3秒前
tuotuo完成签到 ,获得积分10
3秒前
苗条一兰完成签到,获得积分10
3秒前
4秒前
中工完成签到 ,获得积分10
4秒前
5秒前
VDC发布了新的文献求助10
5秒前
REN发布了新的文献求助20
5秒前
盼盼完成签到,获得积分10
6秒前
脑洞疼应助半生采纳,获得30
6秒前
东东完成签到,获得积分10
6秒前
中岛悠斗完成签到,获得积分10
6秒前
LuLan0401完成签到,获得积分10
7秒前
7秒前
语秋完成签到,获得积分10
7秒前
耍酷青梦完成签到 ,获得积分10
7秒前
充电宝应助xhy采纳,获得10
7秒前
陈海伦完成签到 ,获得积分10
8秒前
8秒前
8秒前
小汤圆发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
曾曾完成签到,获得积分10
9秒前
721完成签到,获得积分10
10秒前
糟糕的雪糕完成签到,获得积分10
10秒前
谁能拒绝周杰伦呢完成签到,获得积分10
10秒前
MM完成签到,获得积分10
10秒前
千幻完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672