可积系统
双线性插值
物理
Korteweg–de Vries方程
孤子
非线性系统
空格(标点符号)
双线性形式
数学物理
数学分析
经典力学
量子力学
数学
计算机科学
统计
操作系统
作者
Shabir Ahmad,Sayed Saifullah,Arshad Khan,Mustafa İnç
出处
期刊:Physics Letters A
日期:2022-08-26
卷期号:450: 128393-128393
被引量:44
标识
DOI:10.1016/j.physleta.2022.128393
摘要
Advanced mathematics has analyzed complex systems, a key area of research in nonlinear sciences, including fluid mechanics, the theory of solitons, hydrodynamics, optical fibers, and chaos theory. Nonlocal integrable mKdV equations could help understand dispersive waves in nonlinear and complex media. In this manuscript, we derive bright one and two soliton solutions for a nonlocal nonlinear integrable KdV equation using an improved Hirota bilinear method (HBM). We use MATLAB to visualize the obtained results in 3D space by choosing the appropriate parameter values. It is demonstrated that these solutions have novel characteristics that differ from those of the mKdV equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI