肿瘤微环境
氧气
癌症研究
化学
材料科学
医学
肿瘤细胞
有机化学
作者
Yu Liu,Da Zhong,Yizhe He,Jie Jiang,Weichang Xie,Zhibo Tang,Jianbin Qiu,Jun Luo,Xiaolei Wang
标识
DOI:10.1002/advs.202202920
摘要
Myocardial infarction (MI) is a common disease that seriously threatens human health. It is noteworthy that oxygen is one of the key factors in the regulation of MI pathology procession: the controllable hypoxic microenvironment can enhance the tolerance of cardiac myocytes (CMs) and oxygen therapy regulates the immune microenvironment to repair the myocardial injury. Thus, the development of an oxygen-controllable treatment is critically important to unify MI prevention and timely treatment. Here, a hydrogel encapsulated upconversion cyanobacterium nanocapsule for both MI prevention and treatment is successfully synthesized. The engineered cyanobacteria can consume oxygen via respiration to generate a hypoxic microenvironment, resulting in the upregulation of heat shock protein70 (HSP70), which can enhance the tolerance of CMs for MI. When necessary, under 980 nm near-infrared (NIR) irradiation, the system releases photosynthetic oxygen through upconversion luminescence (UCL) to inhibit macrophage M1 polarization, and downregulates pro-inflammatory cytokines IL-6 and tumor necrosis factor-α (TNF-α), thereby repairing myocardial injury. To sum up, a photoresponsive upconversion cyanobacterium nanocapsule is developed, which can achieve MI prevention and treatment for only one injection via NIR-defined respiration and photosynthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI