Learning All Dynamics: Traffic Forecasting via Locality-Aware Spatio-Temporal Joint Transformer

计算机科学 地点 参考地 深度学习 特征学习 交通拥挤 变压器 人工智能 数据挖掘 机器学习 实时计算 工程类 操作系统 隐藏物 电气工程 哲学 电压 语言学 运输工程
作者
Yuchen Fang,Fang Zhao,Yanjun Qin,Haiyong Luo,Chenxing Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23433-23446 被引量:37
标识
DOI:10.1109/tits.2022.3197640
摘要

Forecasting traffic flow and speed in the urban is important for many applications, ranging from the intelligent navigation of map applications to congestion relief of city management systems. Therefore, mining the complex spatio-temporal correlations in the traffic data to accurately predict traffic is essential for the community. However, previous studies that combined the graph convolution network or self-attention mechanism with deep time series models (e.g., the recurrent neural network) can only capture spatial dependencies in each time slot and temporal dependencies in each sensor, ignoring the spatial and temporal correlations across different time slots and sensors. Besides, the state-of-the-art Transformer architecture used in previous methods is insensitive to local spatio-temporal contexts, which is hard to suit with traffic forecasting. To solve the above two issues, we propose a novel deep learning model for traffic forecasting, named Locality-aware spatio-temporal joint Transformer (Lastjormer), which elaborately designs a spatio-temporal joint attention in the Transformer architecture to capture all dynamic dependencies in the traffic data. Specifically, our model utilizes the dot-product self-attention on sensors across many time slots to extract correlations among them and introduces the linear and convolution self-attention mechanism to reduce the computation needs and incorporate local spatio-temporal information. Experiments on three real-world traffic datasets, England, METR-LA, and PEMS-BAY, demonstrate that our Lastjormer achieves state-of-the-art performances on a variety of challenging traffic forecasting benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
全或无完成签到,获得积分10
1秒前
2秒前
小小媛发布了新的文献求助10
2秒前
orixero应助星川采纳,获得10
3秒前
yu完成签到,获得积分20
3秒前
hotcas完成签到,获得积分10
3秒前
3秒前
4秒前
Hancock完成签到 ,获得积分10
4秒前
852应助糊涂的麦片采纳,获得10
5秒前
yu发布了新的文献求助10
5秒前
6秒前
夜曦完成签到 ,获得积分10
6秒前
6秒前
研友_Zeg3VL完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
yuhui完成签到,获得积分10
7秒前
牛贝贝发布了新的文献求助10
7秒前
忧郁画板完成签到,获得积分10
7秒前
噗噗完成签到,获得积分10
8秒前
8秒前
8秒前
枪王阿绣完成签到 ,获得积分10
8秒前
火星上誉发布了新的文献求助10
9秒前
平凡完成签到,获得积分10
9秒前
秋无远近完成签到,获得积分10
9秒前
tivyg'lk完成签到,获得积分10
10秒前
敢甘完成签到,获得积分10
10秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
10秒前
喵喵发布了新的文献求助10
10秒前
平常亦凝发布了新的文献求助10
10秒前
星辰大海应助十四说四十采纳,获得10
10秒前
10秒前
机灵安白完成签到,获得积分10
10秒前
勤劳的小牛蛙应助yan123采纳,获得10
11秒前
合适的雁易完成签到,获得积分10
11秒前
bang完成签到 ,获得积分10
11秒前
fdkufghkd完成签到,获得积分10
11秒前
马騳骉驳回了PPP应助
12秒前
koly完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479