Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis

化学 分子描述符 保留时间 支持向量机 色谱法 离群值 随机森林 假阳性悖论 生物系统 化学计量学 统计 人工智能 数量结构-活动关系 计算机科学 数学 立体化学 生物
作者
Ziyun Xu,Hamza Chughtai,Lei Tian,Lan Liu,Jean-François Roy,Stéphane Bayen
出处
期刊:Talanta [Elsevier]
卷期号:253: 123861-123861 被引量:12
标识
DOI:10.1016/j.talanta.2022.123861
摘要

Quantitative structure-retention relationship (QSRR) models can be used to predict the chromatographic retention time of chemicals and facilitate the identification of unknown compounds, notably with non-targeted analysis. In this study, QSRR models were developed from the data obtained for 178 pure chemical standards and four types of analytical columns (C18, phenylhexyl, pentafluorophenyl, cyano) in liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). First, different data partitioning ratios and feature selection methods [random forest (RF) and support vector machine (SVM)] were tested to build models to predict chromatographic retention times based on 2D molecular descriptors. The internal and external performances of the non-linear (RF) and corresponding linear predictive models were systematically compared, and RF models resulted in better predictive capacities [p < 0.05, with an average PVE (proportion of variance explained) value of 0.89 ± 0.02] than linear models (0.79 ± 0.03). For each column, the resulting model was applied to identify leachables from actual plastic packaging samples. An in-depth investigation of the top 20 most intense molecular features revealed that all false-positives could be identified as outliers in the QSRR models (outside of the 95% prediction bands). Furthermore, analyzing a sample on multiple chromatographic columns and applying the associated QSRR models increased the capacity to filter false positives. Such an approach will contribute to a more effective identification of unknown or unexpected leachables in plastics (e.g. non-intended added substances), therefore refining our understanding of the chemical risks associated with food contact materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助星河采纳,获得10
3秒前
老李啊完成签到,获得积分10
4秒前
4秒前
CipherSage应助李四采纳,获得10
5秒前
7秒前
李纪磊完成签到,获得积分10
8秒前
老李啊发布了新的文献求助10
10秒前
Orange应助jijibao采纳,获得10
10秒前
11秒前
苏钰发布了新的文献求助10
11秒前
传奇3应助内向阑悦采纳,获得10
11秒前
12秒前
小蘑菇应助fgsci采纳,获得20
13秒前
14秒前
16秒前
两广总督完成签到 ,获得积分10
16秒前
西红柿发布了新的文献求助10
17秒前
Dream97发布了新的文献求助10
17秒前
19秒前
hahaha发布了新的文献求助10
19秒前
科研通AI2S应助研友_8Wz5MZ采纳,获得10
20秒前
李四发布了新的文献求助10
20秒前
独特紫翠发布了新的文献求助10
23秒前
23秒前
小趴菜发布了新的文献求助10
26秒前
26秒前
ding应助超级翠桃采纳,获得10
28秒前
赘婿应助苏钰采纳,获得10
28秒前
Jasper应助刻苦黑米采纳,获得30
29秒前
爆米花应助LSzhai采纳,获得10
30秒前
十七应助kkk采纳,获得10
33秒前
斯文败类应助jijibao采纳,获得10
36秒前
37秒前
健康的雪完成签到,获得积分10
37秒前
英姑应助siu采纳,获得10
40秒前
会飞的猪完成签到,获得积分20
41秒前
佩奇发布了新的文献求助10
41秒前
42秒前
42秒前
谨慎从露完成签到,获得积分20
44秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391622
求助须知:如何正确求助?哪些是违规求助? 3002669
关于积分的说明 8805043
捐赠科研通 2689341
什么是DOI,文献DOI怎么找? 1473055
科研通“疑难数据库(出版商)”最低求助积分说明 681331
邀请新用户注册赠送积分活动 674200