A Two-Stage Mechanism for Demand Response Markets

激励 基线(sea) 需求响应 反事实思维 消费(社会学) 付款 不完美的 概率逻辑 计算机科学 微观经济学 业务 经济 财务 社会科学 哲学 海洋学 语言学 工程类 认识论 人工智能 社会学 电气工程 地质学
作者
Bharadwaj Satchidanandan,Mardavij Roozbehani,Munther A. Dahleh
出处
期刊:IEEE Control Systems Letters 卷期号:7: 49-54 被引量:6
标识
DOI:10.1109/lcsys.2022.3186654
摘要

Demand response involves system operators using incentives to modulate electricity consumption during peak hours or when faced with an incidental supply shortage. However, system operators typically have imperfect information about their customers' baselines, that is, their consumption had the incentive been absent. The standard approach to estimate the reduction in a customer's electricity consumption then is to estimate their counterfactual baseline. However, this approach is not robust to estimation errors or strategic exploitation by the customers and can potentially lead to overpayments to customers who do not reduce their consumption and under payments to those who do. Moreover, optimal power consumption reductions of the customers depend on the costs that they incur for curtailing consumption, which in general are private knowledge of the customers, and which they could strategically misreport in an effort to improve their own respective utilities even if it deteriorates the overall system cost. The two-stage mechanism proposed in this letter circumvents the aforementioned issues. In the day-ahead market, the participating loads are required to submit only a probabilistic description of their next-day consumption and costs to the system operator for day-ahead planning. It is only in real-time, if and when called upon for demand response, that the loads are required to report their baselines and costs. They receive credits for reductions below their reported baselines. The mechanism for calculating the credits guarantees incentive compatibility of truthful reporting of the probability distribution in the day-ahead market and truthful reporting of the baseline and cost in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas完成签到,获得积分10
1秒前
C胖胖完成签到,获得积分10
1秒前
舒心的完成签到,获得积分10
1秒前
zz完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
luozejun完成签到,获得积分10
4秒前
ycp完成签到,获得积分10
5秒前
dawang完成签到 ,获得积分10
5秒前
洁净的智宸完成签到 ,获得积分10
5秒前
zhaopeipei发布了新的文献求助10
5秒前
eternity136完成签到,获得积分10
5秒前
6秒前
SciGPT应助zz采纳,获得10
6秒前
科研欣路完成签到,获得积分10
7秒前
bulingbuling发布了新的文献求助10
8秒前
斯文败类应助Y123采纳,获得10
8秒前
eternity136发布了新的文献求助10
8秒前
9秒前
共享精神应助zzq778采纳,获得10
9秒前
9秒前
9秒前
小辉发布了新的文献求助10
11秒前
跳跃小伙完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
laber应助kento采纳,获得50
12秒前
Jackcaosky完成签到 ,获得积分10
12秒前
午夜咖啡香完成签到,获得积分20
12秒前
小二郎应助冷静采纳,获得10
13秒前
胡航航完成签到,获得积分10
13秒前
大吴克发布了新的文献求助10
15秒前
精明寒蕾完成签到,获得积分10
15秒前
A宇完成签到,获得积分10
16秒前
白兰鸽发布了新的文献求助10
16秒前
jielailai完成签到,获得积分10
16秒前
yangkunmedical完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029