氧化铈
核化学
化学
纳米颗粒
铈
嗜酸乳杆菌
Zeta电位
材料科学
化学工程
纳米技术
有机化学
氧化物
工程类
益生菌
生物
细菌
遗传学
作者
Zahra Salarieh,Akbar Esmaeili,Mohammad Hussein Pad
标识
DOI:10.1016/j.ijbiomac.2023.123215
摘要
Cerium oxide nanoparticles (nano-series) are used as catalysts in industrial applications due to their free radical scavenging properties. Given that free radicals play an essential role in the pathology of many neurological diseases, we investigated the use of nanocrystals as a potential therapeutic agent for oxidative damage. This project synthesized nano-series from a new and environmentally friendly bio-pathway. Investigation of cerium nitrate in culture medium containing inoculated Lactobacillus acidophilus strain before incubation produces nano-series. Loaded with glatiramer acetate (GA) was formed by coating carboxymethylcellulose (CMC) and CeO2. FE-SEM analysis showed nano-series in the 9-11 nm range, spherical shape, and uniform particle size distribution. Cubic nanoparticles containing anti-multiple sclerosis (anti-Ms) treatment called GA were used. Glycerol monostearate (GMS) was used as a fat base, and evening primrose extract was used as an anti-inflammatory in cubosomes. Design-Expert® software was used to study the effects of different formulation factors on the properties of GA-loaded cubic dispersions. Thirty GA-labeled cubic dispersions were prepared with GA-labeled carboxymethylcellulose and evaluated in vitro. The results showed an average nano-series size of 89.02 and a zeta potential of -49.9. Cubosomes containing GA-CMC/CeO2 showed a stable release profile for 180 min. The results showed that cubosomes containing GA-CMC/CeO2 could be a promising drug carrier with normal release behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI