Physiological significance of elevated levels of lactate by exercise training in the brain and body

内科学 乳酸脱氢酶 内分泌学 酸中毒 医学 无氧运动 糖原 乳酸 乳酸阈 乳酸性酸中毒 血乳酸 心率 化学 生物化学 生物 生理学 血压 细菌 遗传学
作者
Sung‐Jun Lee,Yonghyun Choi,Eunseo Jeong,Jongjun Park,Jiwon Kim,Masayoshi Tanaka,Jonghoon Choi
出处
期刊:Journal of Bioscience and Bioengineering [Elsevier]
卷期号:135 (3): 167-175 被引量:49
标识
DOI:10.1016/j.jbiosc.2022.12.001
摘要

For the past 200 years, lactate has been regarded as a metabolic waste end product that causes fatigue during exercise. However, lactate production is closely correlated with energy metabolism. The lactate dehydrogenase-catalyzed reaction uses protons to produce lactate, which delays ongoing metabolic acidosis. Of note, lactate production differs depending on exercise intensity and is not limited to muscles. Importantly, controlling physiological effect of lactate may be a solution to alleviating some chronic diseases. Released through exercise, lactate is an important biomarker for fat oxidation in skeletal muscles. During recovery after sustained strenuous exercise, most of the lactate accumulated during exercise is removed by direct oxidation. However, as the muscle respiration rate decreases, lactate becomes a desirable substrate for hepatic glucose synthesis. Furthermore, improvement in brain function by lactate, particularly, through the expression of vascular endothelial growth factor and brain-derived neurotrophic factor, is being increasingly studied. In addition, it is possible to improve stress-related symptoms, such as depression, by regulating the function of hippocampal mitochondria, and with an increasingly aging society, lactate is being investigated as a preventive agent for brain diseases such as Alzheimer's disease. Therefore, the perception that lactate is equivalent to fatigue should no longer exist. This review focuses on the new perception of lactate and how lactate acts extensively in the skeletal muscles, heart, brain, kidney, and liver. Additionally, lactate is now used to confirm exercise performance and should be further studied to assess its impact on exercise training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1b完成签到,获得积分10
刚刚
gy发布了新的文献求助10
3秒前
双碳小王子完成签到,获得积分10
3秒前
yjt完成签到 ,获得积分10
3秒前
曾志伟完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
岳莹晓完成签到 ,获得积分10
6秒前
ryq327完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
亳亳完成签到 ,获得积分10
8秒前
Orange应助124dc采纳,获得10
9秒前
zhixue2025完成签到 ,获得积分10
9秒前
10秒前
小知了完成签到,获得积分10
11秒前
zybbb完成签到 ,获得积分10
13秒前
深情不弱完成签到 ,获得积分10
13秒前
共享精神应助guard采纳,获得10
14秒前
jixiekaifa完成签到 ,获得积分10
14秒前
14秒前
123完成签到,获得积分10
15秒前
Orochimaru发布了新的文献求助10
15秒前
屁王完成签到,获得积分10
15秒前
雪阳发布了新的文献求助10
16秒前
东风完成签到,获得积分10
16秒前
彩色从雪完成签到,获得积分10
17秒前
lllllsy发布了新的文献求助10
18秒前
sa完成签到 ,获得积分10
18秒前
不知道完成签到,获得积分10
20秒前
qin完成签到,获得积分10
20秒前
阿也完成签到 ,获得积分10
21秒前
yy爱科研完成签到,获得积分10
21秒前
情怀应助cui采纳,获得10
22秒前
杨老师完成签到 ,获得积分10
22秒前
曹沛岚完成签到,获得积分10
23秒前
yuan完成签到,获得积分10
23秒前
健脊护柱完成签到 ,获得积分10
23秒前
花花完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
Huimin完成签到,获得积分10
24秒前
Orochimaru完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664787
求助须知:如何正确求助?哪些是违规求助? 4869912
关于积分的说明 15108740
捐赠科研通 4823528
什么是DOI,文献DOI怎么找? 2582406
邀请新用户注册赠送积分活动 1536443
关于科研通互助平台的介绍 1494934