化学
低聚糖
色谱法
快速蛋白质液相色谱法
单体
质谱法
大小排阻色谱法
高效液相色谱法
生物化学
有机化学
聚合物
酶
作者
Yingyue Zhang,Dan Zhuang,Huiyang Wang,Chun-yao Liu,Guangping Lv,Lijuan Meng
标识
DOI:10.1016/j.carbpol.2021.118854
摘要
Sixteen oligosaccharide monomers with the degree of polymerization 3 to 18 (DP 3 to DP 18) and three active fractions (DP 3-9, DP 8-11, and DP 11-17) were separated from Atractylodes lancea (Thunb.) DC. by optimized fast protein liquid chromatography coupled with refractive index detector (FPLC-RID) and preparation hydrophilic interaction chromatography (Pre-HILIC). Gas chromatography-mass spectrometer (GC-MS), liquid chromatography tandem mass spectrometry (LC-MS/MS), nuclear magnetic resonance (NMR) spectroscopy, and methylation analysis showed that the oligosaccharide in A. lancea was 1-kestose [β-D-fructofuranosyl-(2 → 1)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside] (inulin-type fructooligosaccharides, FOS). Particularly, DP 3-9 showed the best capacity in stimulating phagocytic, NO, and cytokines production on RAW264.7 cells than any other purified oligosaccharide monomers and active fractions. It could also activate T-cells in Peyer's patch cells and enhance the production of colony stimulation factors. Besides, FPLC-RID showed a good capacity for large-scale preparation of DP 3-9 with the recovery of more than 93%. The bioactivity of sixteen FOS monomers (DP 3 to DP 18) and three FOS fractions (DP 3-9, DP 8-11, and DP 11-17) investigated in this study are beneficial for the utilization of FOS as a functional ingredient in novel product development.
科研通智能强力驱动
Strongly Powered by AbleSci AI