蛋白酶
毛细管电泳
化学
毛细管作用
基质(水族馆)
色谱法
肽
劈理(地质)
电泳
酶
生物物理学
生物化学
生物
材料科学
复合材料
古生物学
断裂(地质)
生态学
作者
Shuwen Zhou,Pengfei Cui,Jie Sheng,Xueli Zhang,Pengju Jiang,Xiaomin Ni,Kai Cao,Lin Qiu
标识
DOI:10.1016/j.bpc.2021.106696
摘要
The detection of protease activity in the body plays a significant role in the early diagnosis of diseases. However, enzymes inevitably come into contact with various complex biological fluids in the body during the flow, which greatly increases the detection difficulty. Therefore, protease detection in vivo has great challenges. Herein, we report a new assay for detecting protease using capillary electrophoresis inside a capillary with semicircular bends. We first designed a peptide substrate, and then the peptide was self-assembled with quantum dots to form a QDs-peptide substrate. The capillary was bent to semicircular-shaped turns and served as a micro-reactor to allow protease and substrate react in it. Due to the different electrophoretic velocity, the protease and the substrate were mixed inside the bent capillary with sequential injections and the cleavage of the substrate can be detected using capillary electrophoresis combined with Förster resonance energy transfer technology. This novel assay will greatly expand the detection of enzyme activity in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI