Experimental study on the performance of DOA estimation algorithm using a coprime acoustic sensor array without a priori knowledge of the source number

到达方向 互质整数 算法 平滑的 计算机科学 协方差矩阵 稳健性(进化) 麦克风阵列 多信号分类 先验与后验 数学 话筒 计算机视觉 天线(收音机) 声压 生物化学 电信 基因 认识论 哲学 化学
作者
Feibiao Dong,Ye Jiang,Jian Liu,Jia Lü
出处
期刊:Applied Acoustics [Elsevier]
卷期号:186: 108502-108502 被引量:3
标识
DOI:10.1016/j.apacoust.2021.108502
摘要

Coprime acoustic sensor arrays have been recently developed to estimate the direction-of-arrival (DOA) of multiple sound sources and may be needed in many acoustic applications because they can provide greater degrees of freedom and better estimation performance. However, most existing DOA estimation algorithms are derived under the assumption that the number of sources is known and have poor robustness due to unknown noise. This paper proposes a robust DOA estimation algorithm without estimating the number of sources using a coprime acoustic sensor array. The solution is based on the multiple signal classification (MUSIC)-like DOA estimation algorithm framework, in which a new spatial covariance model via spatial smoothing of the coprime array output signal is designed. The proposed spatial smoothing generalized MUSIC-like (SS-G-MUSIC-like) algorithm utilizes the diagonal loading technique to reconstruct the spatial smoothed covariance matrix. Results related to one-sound source and two-sound sources DOA estimation experiments show that the proposed algorithm can provide more focused source tracks over the entire data segment and better clutter suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qzaima发布了新的文献求助10
刚刚
米酒完成签到,获得积分10
2秒前
step_stone给step_stone的求助进行了留言
2秒前
乐乐应助ayin采纳,获得10
3秒前
无花果应助hhh采纳,获得10
5秒前
叁壹粑粑完成签到,获得积分10
6秒前
酷酷碧完成签到,获得积分10
6秒前
7秒前
磕盐民工完成签到,获得积分10
8秒前
8秒前
忘羡222发布了新的文献求助20
8秒前
我是老大应助TT采纳,获得10
10秒前
10秒前
10秒前
雪鸽鸽完成签到,获得积分10
11秒前
完美世界应助开心青旋采纳,获得10
11秒前
LD完成签到 ,获得积分10
13秒前
xjy完成签到 ,获得积分10
13秒前
qzaima完成签到,获得积分10
13秒前
14秒前
xueshufengbujue完成签到,获得积分10
14秒前
楼寒天发布了新的文献求助10
14秒前
15秒前
科研通AI5应助111111111采纳,获得10
16秒前
16秒前
sunsunsun完成签到,获得积分10
16秒前
哎嘤斯坦完成签到,获得积分10
18秒前
18秒前
sweetbearm应助潦草采纳,获得10
19秒前
sunsunsun发布了新的文献求助10
19秒前
酷波er应助Mars采纳,获得10
20秒前
迪士尼在逃后母完成签到,获得积分10
20秒前
20秒前
我是老大应助su采纳,获得10
21秒前
hhh发布了新的文献求助10
22秒前
23秒前
科研通AI5应助魏伯安采纳,获得10
24秒前
24秒前
神可馨完成签到 ,获得积分10
25秒前
Hangerli发布了新的文献求助20
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824