Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images

分割 计算机科学 乳腺超声检查 人工智能 超声波 卷积(计算机科学) 人工神经网络 乳腺癌 模式识别(心理学) 深度学习 癌症 医学 放射科 内科学 乳腺摄影术
作者
Yu Yan,Yangyang Liu,Yiyun Wu,Hong Zhang,Yameng Zhang,Lin Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103299-103299 被引量:58
标识
DOI:10.1016/j.bspc.2021.103299
摘要

Breast cancer poses a great threat on women health due to its high malignant rate. In China, ultrasound screening is the commonly-used method for breast cancer diagnosis, and the localization and segmentation of the lesions in ultrasound images are helpful for breast cancer detection. In this paper, an Attention Enhanced U-net with hybrid dilated convolution (AE U-net with HDC) model was proposed and employed to segment the breast tumors in ultrasound images. First, based on Attention U-net, we added a new loss function to update the weight matrix in the AGs module, in order to enhance the weight of the lesion area. Combined with fine-tuning training method, the precision of breast ultrasound image lesion region segmentation was improved from 82.38% to 86.28% and the M-IOU was improved from 76.27% to 81.81%. Second, three groups of HDC with expansion rates of [1,2,5] were integrated into AE U-net to replace the four convolution operations. HDC module brought larger receptive field and reduced the loss of spatial information. The experimental results proved that HDC module was helpful to improve the Acc of image segmentation results from 94.18% to 95.81% and the Recall from 78.69% to 80.48%. Combined with U-net, the F1 score, AUC, Acc and M-IOU of the network proposed in this paper had significantly improved. It proved that AE U-net with HDC model would have very important research value and application prospect for modern medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr_Shi发布了新的文献求助10
刚刚
刚刚
zhencheng发布了新的文献求助10
刚刚
hmj007完成签到,获得积分10
刚刚
田様应助liuxuwei采纳,获得10
刚刚
刚刚
超哥发布了新的文献求助10
1秒前
CCC发布了新的文献求助10
2秒前
虚幻诗柳发布了新的文献求助10
3秒前
俭朴的世立完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
毛豆应助小李采纳,获得20
5秒前
5秒前
阳光白山发布了新的文献求助10
6秒前
JamesPei应助牧州东语榕采纳,获得10
7秒前
7秒前
zhangzhen完成签到,获得积分10
8秒前
yar应助周周采纳,获得10
9秒前
朱湋帆发布了新的文献求助30
10秒前
10秒前
乐乐应助zhencheng采纳,获得10
11秒前
FashionBoy应助勤奋未来采纳,获得10
11秒前
王哈哈发布了新的文献求助10
11秒前
万能图书馆应助khan采纳,获得10
12秒前
小熊应助183采纳,获得10
12秒前
12秒前
消消乐发布了新的文献求助10
12秒前
烟花应助文献采纳,获得10
13秒前
蛙蛙完成签到 ,获得积分10
13秒前
虚幻诗柳完成签到,获得积分10
13秒前
14秒前
大胆胡萝卜完成签到,获得积分10
14秒前
飘逸的平松完成签到 ,获得积分10
14秒前
15秒前
飞鸟发布了新的文献求助10
16秒前
星星收藏家关注了科研通微信公众号
16秒前
FunHigh完成签到 ,获得积分10
17秒前
路过完成签到,获得积分10
18秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3285169
求助须知:如何正确求助?哪些是违规求助? 2922403
关于积分的说明 8411599
捐赠科研通 2594069
什么是DOI,文献DOI怎么找? 1414286
科研通“疑难数据库(出版商)”最低求助积分说明 658811
邀请新用户注册赠送积分活动 640677