Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images

分割 计算机科学 乳腺超声检查 人工智能 超声波 卷积(计算机科学) 人工神经网络 乳腺癌 模式识别(心理学) 深度学习 癌症 医学 放射科 内科学 乳腺摄影术
作者
Yu Yan,Yangyang Liu,Yiyun Wu,Hong Zhang,Yameng Zhang,Lin Meng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103299-103299 被引量:66
标识
DOI:10.1016/j.bspc.2021.103299
摘要

Breast cancer poses a great threat on women health due to its high malignant rate. In China, ultrasound screening is the commonly-used method for breast cancer diagnosis, and the localization and segmentation of the lesions in ultrasound images are helpful for breast cancer detection. In this paper, an Attention Enhanced U-net with hybrid dilated convolution (AE U-net with HDC) model was proposed and employed to segment the breast tumors in ultrasound images. First, based on Attention U-net, we added a new loss function to update the weight matrix in the AGs module, in order to enhance the weight of the lesion area. Combined with fine-tuning training method, the precision of breast ultrasound image lesion region segmentation was improved from 82.38% to 86.28% and the M-IOU was improved from 76.27% to 81.81%. Second, three groups of HDC with expansion rates of [1,2,5] were integrated into AE U-net to replace the four convolution operations. HDC module brought larger receptive field and reduced the loss of spatial information. The experimental results proved that HDC module was helpful to improve the Acc of image segmentation results from 94.18% to 95.81% and the Recall from 78.69% to 80.48%. Combined with U-net, the F1 score, AUC, Acc and M-IOU of the network proposed in this paper had significantly improved. It proved that AE U-net with HDC model would have very important research value and application prospect for modern medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ouiiiblue完成签到,获得积分10
2秒前
小二郎应助ln采纳,获得10
3秒前
una发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
古月发布了新的文献求助10
6秒前
7秒前
合适含蕾完成签到,获得积分10
9秒前
9秒前
lei发布了新的文献求助10
9秒前
Binbin发布了新的文献求助10
10秒前
爆米花应助古月采纳,获得10
11秒前
猪猪hero应助某奈在看海采纳,获得10
11秒前
11秒前
太叔易云发布了新的文献求助10
11秒前
内向怀曼发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
彭于晏应助lei采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
棋士应助科研通管家采纳,获得10
16秒前
慕青应助达克赛德采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得20
16秒前
Owen应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得30
16秒前
huofuman发布了新的文献求助10
16秒前
共享精神应助科研通管家采纳,获得10
17秒前
17秒前
李爱国应助Binbin采纳,获得10
17秒前
棋士应助科研通管家采纳,获得10
17秒前
田様应助菠萝派采纳,获得10
17秒前
大模型应助科研通管家采纳,获得30
17秒前
17秒前
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019