In the current report, nitrogen and carbon co-doped molybdenum disulfide (MoS 2 ) nanoflakes were prepared via a simple single-step hydrothermal scheme. The structural, morphological, and chemical composition of the as-synthesized material was purposefully depicted using X-ray diffraction profile, scanning electron microscopy, and high-resolution transmission electron microscopy, EDX-mappings, X-rays photoelectron spectroscopy, Fourier-transform infrared, and thermogravimetric analysis. The as-synthesized material was inspected as an active electrode for both lithium-ion battery and supercapacitor. In this regard, for lithium-ion battery, the as-prepared electrode exhibited a high first discharge capacity of 1280 mAh g −1 at a current density of 100 mA g −1 escorted by a remarkable rate capability. Otherwise, for the supercapacitor, the as-prepared electrode delivered specific energy of 45 Wh kg −1 at a specific power of 912 W kg −1 and still retained a high specific power of 4.62 kW kg −1 at 24 W h kg −1 , signifying a retention percentage of 90% after 3000 repetitive charge/discharge cycles. All these results manifested the potency of this material in energy-storage applications.