已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robustness of AI-based prognostic and systems health management

计算机科学 模棱两可 生命关键系统 对抗制 数据驱动 过程(计算) 风险分析(工程) 稳健性(进化) 人工智能 机器学习 生物化学 医学 基因 操作系统 化学 程序设计语言 软件
作者
Samir Khan,Seiji Tsutsumi,Takehisa Yairi,Shinichi Nakasuka
出处
期刊:Annual Reviews in Control [Elsevier BV]
卷期号:51: 130-152 被引量:22
标识
DOI:10.1016/j.arcontrol.2021.04.001
摘要

Abstract Prognostic and systems Health Management (PHM) is an integral part of a system. It is used for solving reliability problems that often manifest due to complexities in design, manufacturing, operating environment and system maintenance. For safety-critical applications, using a model-based development process for complex systems might not always be ideal but it is equally important to establish the robustness of the solution. The information revolution has allowed data-driven methods to diffuse within this field to construct the requisite process (or system models) to cope with the so-called big data phenomenon. This is supported by large datasets that help machine-learning models achieve impressive accuracy. AI technologies are now being integrated into many PHM related applications including aerospace, automotive, medical robots and even autonomous weapon systems. However, with such rapid growth in complexity and connectivity, a systems’ behaviour is influenced in unforeseen ways by cyberattacks, human errors, working with incorrect or incomplete models and even adversarial phenomena. Many of these models depend on the training data and how well the data represents the test data. These issues require fine-tuning and even retraining the models when there is even a small change in operating conditions or equipment. Yet, there is still ambiguity associated with their implementation, even if the learning algorithms classify accordingly. Uncertainties can lie in any part of the AI-based PHM model, including in the requirements, assumptions, or even in the data used for training and validation. These factors lead to sub-optimal solutions with an open interpretation as to why the requirements have not been met. This warrants the need for achieving a level of robustness in the implemented PHM, which is a challenging task in a machine learning solution. This article aims to present a framework for testing the robustness of AI-based PHM. It reviews some key milestones achieved in the AI research community to deal with three particular issues relevant for AI-based PHM in safety-critical applications: robustness to model errors, robustness to unknown phenomena and empirical evaluation of robustness during deployment. To deal with model errors, many techniques from probabilistic inference and robust optimisation are often used to provide some robustness guarantee metric. In the case of unknown phenomena, techniques include anomaly detection methods, using causal models, the construction of ensembles and reinforcement learning. It elicits from the authors’ work on fault diagnostics and robust optimisation via machine learning techniques to offer guidelines to the PHM research community. Finally, challenges and future directions are also examined; on how to better cope with any uncertainties as they appear during the operating life of an asset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到 ,获得积分10
1秒前
一条蛆完成签到 ,获得积分10
1秒前
赘婿应助tufuczy采纳,获得10
1秒前
喝儿何完成签到,获得积分10
13秒前
丘比特应助小白白采纳,获得10
13秒前
yutang完成签到 ,获得积分10
14秒前
可靠馒头完成签到,获得积分10
16秒前
文静外套发布了新的文献求助10
16秒前
3113129605完成签到 ,获得积分10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
21秒前
21秒前
vagabond完成签到 ,获得积分10
21秒前
ff完成签到 ,获得积分10
21秒前
23秒前
24秒前
无花果应助科研进化中采纳,获得10
26秒前
万能图书馆应助付创采纳,获得10
27秒前
7777发布了新的文献求助10
28秒前
李志全完成签到 ,获得积分10
29秒前
34秒前
大个应助文静外套采纳,获得10
37秒前
37秒前
xs发布了新的文献求助10
38秒前
猪猪侠发布了新的文献求助10
41秒前
tuanheqi应助要好好看文献采纳,获得100
43秒前
猪猪侠完成签到,获得积分10
46秒前
50秒前
文静外套完成签到,获得积分20
51秒前
田様应助刘露采纳,获得30
53秒前
Owen应助小白白采纳,获得10
54秒前
aldehyde完成签到,获得积分0
55秒前
南烛完成签到 ,获得积分10
55秒前
55秒前
58秒前
付创发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176