Use of Machine Learning Methods in Syntactic Foam Design

粘弹性 材料科学 高密度聚乙烯 复合泡沫 动态力学分析 动态模量 人工神经网络 模数 复合材料 聚乙烯 计算机科学 聚合物 人工智能
作者
Xianbo Xu,Nïkhil Gupta
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 460-473
标识
DOI:10.1016/b978-0-12-820352-1.00178-4
摘要

Due to the viscoelastic nature of polymers, material characterization is a major challenge in designing syntactic foam microstructure. As the properties of syntactic foam shows strong nonlinearity, it is overwhelming to test each composite material for every application case under the combined effects of temperature and strain rate. Machine learning methods can help by using the existing datasets to predict properties over a different combination of parameters. This article focuses on building an artificial neural network (ANN) based architecture to help in predicting properties and compositions of viscoelastic materials. The high density polyethylene (HDPE) syntactic foam is used as a case study material. Four types of HDPE syntactic foams were tested using dynamic mechanical analysis (DMA). Then, ANN was used to build the master relation of viscoelastic properties with respect to frequency, temperature, particle volume percentage and strain. The master relation for storage modulus was transformed to time domain relaxation function and used to predict the stress-strain relations to calculate modulus. The predicted and measured modulus values show good agreements for both tested and extrapolated compositions. These results show that machine learning methods can help in designing composite materials and reduce the requirement for generating experimental data over a large number of loading conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
小米应助科研通管家采纳,获得10
刚刚
焦爽发布了新的文献求助10
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Evelyn应助科研通管家采纳,获得10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得20
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
酒洲发布了新的文献求助10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
yanaaaaaa发布了新的文献求助30
刚刚
刚刚
刚刚
刚刚
wy.he应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
Evelyn应助科研通管家采纳,获得10
刚刚
phoebe完成签到,获得积分10
刚刚
1秒前
酷波er应助执刀手采纳,获得10
1秒前
Akim应助abby采纳,获得10
1秒前
小姚霏发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
而与白醋发布了新的文献求助10
2秒前
2秒前
隐逸者完成签到,获得积分10
2秒前
Yikepp发布了新的文献求助30
3秒前
wy18567337203发布了新的文献求助10
3秒前
Helen发布了新的文献求助30
3秒前
天天快乐应助个别采纳,获得10
3秒前
司马绮山发布了新的文献求助10
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133