Learning to detect unseen object classes by between-class attribute transfer

计算机科学 不相交集 对象(语法) 人工智能 班级(哲学) 任务(项目管理) 代表(政治) 模式识别(心理学) 表(数据库) 目标检测 图像(数学) 上下文图像分类 机器学习 学习迁移 数据挖掘 数学 经济 管理 法学 政治学 组合数学 政治
作者
Lampert,Nickisch,Harmeling
标识
DOI:10.1109/cvpr.2009.5206594
摘要

We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of thousands of different object classes and for only a very few of them image, collections have been formed and annotated with suitable class labels. In this paper, we tackle the problem by introducing attribute-based classification. It performs object detection based on a human-specified high-level description of the target objects instead of training images. The description consists of arbitrary semantic attributes, like shape, color or even geographic information. Because such properties transcend the specific learning task at hand, they can be pre-learned, e.g. from image datasets unrelated to the current task. Afterwards, new classes can be detected based on their attribute representation, without the need for a new training phase. In order to evaluate our method and to facilitate research in this area, we have assembled a new large-scale dataset, “Animals with Attributes”, of over 30,000 animal images that match the 50 classes in Osherson's classic table of how strongly humans associate 85 semantic attributes with animal classes. Our experiments show that by using an attribute layer it is indeed possible to build a learning object detection system that does not require any training images of the target classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
haohao完成签到,获得积分20
刚刚
认真的马里奥应助yy采纳,获得10
1秒前
归尘发布了新的文献求助10
3秒前
李爱国应助zhen采纳,获得10
3秒前
miao发布了新的文献求助30
3秒前
SciGPT应助生壁采纳,获得10
5秒前
在水一方应助叶立军采纳,获得10
6秒前
顾矜应助想喝冰美采纳,获得10
6秒前
6秒前
重要的平文完成签到,获得积分10
7秒前
7秒前
8秒前
pluto应助阿晴采纳,获得100
9秒前
10秒前
10秒前
zhuxl应助大砍刀采纳,获得10
11秒前
11秒前
zz发布了新的文献求助10
12秒前
球闪发布了新的文献求助10
13秒前
Orange应助shuan采纳,获得30
14秒前
hao完成签到,获得积分10
14秒前
毛豆应助动听书蕾采纳,获得10
14秒前
ceeray23应助yokyi采纳,获得30
14秒前
傻瓜子发布了新的文献求助10
15秒前
15秒前
16秒前
卡皮巴拉发布了新的文献求助10
18秒前
yumi2225完成签到,获得积分10
18秒前
19秒前
想喝冰美发布了新的文献求助10
19秒前
20秒前
haohao发布了新的文献求助10
20秒前
细腻千秋完成签到 ,获得积分10
21秒前
灵巧书本发布了新的文献求助10
21秒前
22秒前
daijunhan发布了新的文献求助10
22秒前
日拱一卒完成签到,获得积分10
23秒前
ding应助李lll采纳,获得10
26秒前
英姑应助现在就去看文献采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605