Response of Different Band Combinations in Gaofen-6 WFV for Estimating of Regional Maize Straw Resources Based on Random Forest Classification

随机森林 支持向量机 稻草 遥感 土地覆盖 计算机科学 空间分布 环境科学 统计 数学 土地利用 人工智能 地理 农学 工程类 土木工程 生物
作者
Huawei Mou,Huan Li,Yuguang Zhou,Renjie Dong‬
出处
期刊:Sustainability [MDPI AG]
卷期号:13 (9): 4603-4603 被引量:8
标识
DOI:10.3390/su13094603
摘要

Maize straw is a valuable renewable energy source. The rapid and accurate determination of its yield and spatial distribution can promote improved utilization. At present, traditional straw estimation methods primarily rely on statistical analysis that may be inaccurate. In this study, the Gaofen 6 (GF-6) satellite, which combines high resolution and wide field of view (WFV) imaging characteristics, was used as the information source, and the quantity of maize straw resources and spatial distribution characteristics in Qihe County were analyzed. According to the phenological characteristics of the study area, seven classification classes were determined, including maize, buildings, woodlands, wastelands, water, roads, and other crops, to explore the influence of sample separation and test the responsiveness to different land cover types with different waveband combinations. Two supervised classification methods, support vector machine (SVM) and random forest (RF), were used to classify the study area, and the influence of the newly added band of GF-6 WFV on the classification accuracy of the study area was analyzed. Furthermore, combined with field surveys and agricultural census data, a method for estimating the quantity of maize straw and analyzing the spatial distribution based on a single-temporal remote sensing image and random forests was proposed. Finally, the accuracy of the measurement results is evaluated at the county level. The results showed that the RF model made better use of the newly added bands of GF-6 WFV and improved the accuracy of classification, compared with the SVM model; the two red-edge bands improved the accuracy of crop classification and recognition; the purple and yellow bands identified non-vegetation more effectively than vegetation, thus minimizing the “salt-and-pepper noise” of classification results. However, the changes to total classification accuracy were not obvious; the theoretical quantity of maize straw in Qihe County in 2018 was 586.08 kt, which reflects an error of only 2.42% compared to the statistical result. Hence, the RF model based on single-temporal GF-6 WFV can effectively estimate regional maize straw yield and spatial distribution, which lays a theoretical foundation for straw recycling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowu完成签到,获得积分10
刚刚
织诗成锦完成签到,获得积分10
1秒前
科研通AI5应助文艺水蜜桃采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助BILNQPL采纳,获得10
2秒前
流白完成签到,获得积分10
2秒前
2秒前
Yolo完成签到,获得积分20
2秒前
YY应助胖豆采纳,获得10
3秒前
3秒前
jagger发布了新的文献求助10
3秒前
3秒前
4秒前
ChemistryZyh完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
充电宝应助朴素的士晋采纳,获得10
5秒前
5秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
7秒前
7秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
7秒前
7秒前
CodeCraft应助Mumu采纳,获得10
8秒前
飘逸数据线完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
Gauss完成签到,获得积分0
8秒前
丘奇完成签到,获得积分10
8秒前
木子发布了新的文献求助10
8秒前
标致的方盒完成签到,获得积分10
8秒前
9秒前
致橡树完成签到,获得积分20
9秒前
Yolo发布了新的文献求助10
9秒前
yyy完成签到,获得积分20
10秒前
10秒前
10秒前
yoon发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762