Response of Different Band Combinations in Gaofen-6 WFV for Estimating of Regional Maize Straw Resources Based on Random Forest Classification

随机森林 支持向量机 稻草 遥感 土地覆盖 计算机科学 空间分布 环境科学 统计 数学 土地利用 人工智能 地理 农学 工程类 土木工程 生物
作者
Huawei Mou,Huan Li,Yuguang Zhou,Renjie Dong‬
出处
期刊:Sustainability [MDPI AG]
卷期号:13 (9): 4603-4603 被引量:8
标识
DOI:10.3390/su13094603
摘要

Maize straw is a valuable renewable energy source. The rapid and accurate determination of its yield and spatial distribution can promote improved utilization. At present, traditional straw estimation methods primarily rely on statistical analysis that may be inaccurate. In this study, the Gaofen 6 (GF-6) satellite, which combines high resolution and wide field of view (WFV) imaging characteristics, was used as the information source, and the quantity of maize straw resources and spatial distribution characteristics in Qihe County were analyzed. According to the phenological characteristics of the study area, seven classification classes were determined, including maize, buildings, woodlands, wastelands, water, roads, and other crops, to explore the influence of sample separation and test the responsiveness to different land cover types with different waveband combinations. Two supervised classification methods, support vector machine (SVM) and random forest (RF), were used to classify the study area, and the influence of the newly added band of GF-6 WFV on the classification accuracy of the study area was analyzed. Furthermore, combined with field surveys and agricultural census data, a method for estimating the quantity of maize straw and analyzing the spatial distribution based on a single-temporal remote sensing image and random forests was proposed. Finally, the accuracy of the measurement results is evaluated at the county level. The results showed that the RF model made better use of the newly added bands of GF-6 WFV and improved the accuracy of classification, compared with the SVM model; the two red-edge bands improved the accuracy of crop classification and recognition; the purple and yellow bands identified non-vegetation more effectively than vegetation, thus minimizing the “salt-and-pepper noise” of classification results. However, the changes to total classification accuracy were not obvious; the theoretical quantity of maize straw in Qihe County in 2018 was 586.08 kt, which reflects an error of only 2.42% compared to the statistical result. Hence, the RF model based on single-temporal GF-6 WFV can effectively estimate regional maize straw yield and spatial distribution, which lays a theoretical foundation for straw recycling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的紫菜应助千帆采纳,获得20
2秒前
2秒前
脑洞疼应助枯夏采纳,获得10
2秒前
3秒前
lily完成签到,获得积分10
6秒前
柯雪发布了新的文献求助10
7秒前
wj完成签到,获得积分10
8秒前
半兰发布了新的文献求助10
8秒前
不落完成签到,获得积分10
8秒前
8秒前
高挑的果汁完成签到,获得积分10
8秒前
Lumos完成签到,获得积分10
10秒前
11秒前
MXJ完成签到,获得积分10
11秒前
12秒前
温柔强炫发布了新的文献求助10
16秒前
bruna应助lily采纳,获得30
16秒前
卡司发布了新的文献求助10
17秒前
21秒前
无奈曼云完成签到,获得积分10
22秒前
22秒前
23秒前
柯雪完成签到,获得积分20
23秒前
23秒前
25秒前
轻松海云完成签到,获得积分10
26秒前
cc发布了新的文献求助10
28秒前
达瓦里氏完成签到 ,获得积分10
29秒前
小马甲应助聪慧的冷风采纳,获得10
30秒前
31秒前
雾失楼台发布了新的文献求助30
32秒前
JMao完成签到,获得积分10
33秒前
HAP完成签到,获得积分10
39秒前
迷路安阳发布了新的文献求助10
40秒前
可乐完成签到 ,获得积分10
40秒前
42秒前
42秒前
43秒前
45秒前
老乡开下门吧完成签到 ,获得积分10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578