化学
转移加氢
钌
苯乙酮
催化作用
卡宾
吡啶
氢化物
药物化学
联吡啶
位阻效应
2,2'-联吡啶
光化学
有机化学
金属
晶体结构
作者
Akkharadet Piyasaengthong,Luke J. Williams,Dmitry S. Yufit,James W. Walton
出处
期刊:Dalton Transactions
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:51 (1): 340-351
被引量:4
摘要
Transfer hydrogenation (TH) is a powerful synthetic tool in the production of secondary alcohols from ketones by using a non-H2 hydrogen source along with metal catalysts. Among homogeneous catalysts, Ru(II) complexes are the most efficient catalysts. In our research, six novel ruthenium(II) complexes bearing bipyridine-based ligands [Ru(L1)Cl2] (1), [Ru(L1)(PPh3)Cl]Cl (2) and [Ru(L2)Cl2] (3) and N-heterocyclic carbene-supported pyridine (NCN) ligands [RuCp(L3)]PF6 (4), [RuCp*(L3)]PF6 (5), and [Ru(p-cymene)(L3)Cl]PF6 (6) (where L1 = 6,6'-bis(aminomethyl)-2,2'-bipyridine, L2 = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine and L3 = 1,3-bis(2-methylpyridyl)imidazolium bromide) were synthesised and characterised by NMR spectroscopy, HRMS, and X-ray crystallography. The catalytic transfer hydrogenation of 28 ketones in 2-propanol at 80 °C in the presence of KOtBu (5 mol%) was demonstrated and the effect of ligands is highlighted. The results show that catalyst 1 exhibits improved TH efficiency compared to the commercially available Milstein catalyst and displays higher catalytic activity than 2 due to the steric effect from PPh3. From a combination of kinetic data and Eyring analysis, a zero-order dependence on the acetophenone substrate is observed, implying a rate-limiting hydride transfer step, leading to the proposed inner-sphere hydride transfer mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI