逃避(道德)
生物
免疫系统
肺癌
蛋白质基因组学
计算生物学
癌症
免疫学
肿瘤科
基因
遗传学
医学
基因组
基因组学
作者
Janne Lehtiö,Taner Arslan,Ioannis Siavelis,Yanbo Pan,Fabio Socciarelli,Olena Berkovska,Husen M. Umer,Georgios Mermelekas,Mohammad Pirmoradian,Mats Jönsson,Hans Brunnström,Odd Terje Brustugun,Krishna Pinganksha Purohit,Richard Cunningham,Hassan Foroughi Asl,Sofi Isaksson,Elsa Arbajian,Mattias Aine,Anna Karlsson,Marija Kotevska
出处
期刊:Nature cancer
[Nature Portfolio]
日期:2021-11-22
卷期号:2 (11): 1224-1242
被引量:68
标识
DOI:10.1038/s43018-021-00259-9
摘要
Despite major advancements in lung cancer treatment, long-term survival is still rare, and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune evasion mechanisms. Here we performed in-depth mass spectrometry (MS)-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition MS-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI